import json import os import shutil import requests import gradio as gr from huggingface_hub import Repository, InferenceClient HF_TOKEN = os.environ.get("HF_TOKEN", None) API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-180B-chat" BOT_NAME = "Falcon" STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"] EXAMPLES = [["climate change"], ["2308.15699"], ["hallucination"], ["2308.00205"], ["large language model"], ["2308.05204"], ["2308.10873"], ["2308.06355"],["2308.01684"],["2308.00352"],["2308.07773"]] client = InferenceClient( API_URL, headers={"Authorization": f"Bearer {HF_TOKEN}"}, ) id_dict = {} for i in range(0,4): fname = "arxiv_2023_" + str(i) with open(fname, "r") as f: for line in f: D = json.loads(line) id_dict[D['id']] = D def format_prompt_summarize(message, history, system_prompt, keyword): prompt = "" prompt += "System: You are scholarly RESEARCH ASSISTANT who can read the ARXIV scholarly article.\n" prompt += "User: READ ALL THE TITLEs and ABSTRACTs of various article below\n" prompt += "Generate a SUMMARY of all the articles below relevant to the research for the field of \"" + keyword + "\"\n" prompt += "SUGGEST FIVE IMPORTANT FINDINGS or ORIGINAL CONTRIBUTIONS of OBSERVATIONs for the field of \"" + keyword + "\" that summarizes the work.\n" prompt += "Each BULLET POINT must be be less than 15 WORDS. \n" prompt += "Output the FIVE KEY FINDINGS as BULLET POINTS with UNDERLINE OR BOLDEN KEY PHRASES.\n" prompt += "Propose ONE CREATIVE ACTIONABLE IDEA for FUTURE extension of the RESEARCH\n. You MUST output the CREATIVE IDEA with a BULB OR IDEA OR THINKING emoji.\n" prompt += "Output ONE CREATIVE IDEA for FUTURE extension with a RANDOM emoji\n" prompt += "Choose an UNRELATED or ORTHOGONAL field where the FINDINGS of the article can be applied.\n" prompt += "In a new line, OUTPUT ONE CRAZY IDEA in 20 WORDS how the KEY FINDINGS of RESEARCH article can be applied in an ORTHOGONAL or UNRELATED FIELD with a CRAZY IDEA emoji \n" prompt += message + "\n" mock_prompt = "" if system_prompt == "": mock_prompt += f"System: {system_prompt}\n" for user_prompt, bot_response in history: mock_prompt += f"User: {user_prompt}\n" mock_prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " mock_prompt += f"""User: {message} Falcon:""" return prompt def format_prompt(message, history, system_prompt): prompt = "" prompt += "System: You are scholarly RESEARCH ASSISTANT who can read the ARXIV scholarly article.\n" prompt += "READ THE TITLE and ABSTRACT of the article below\n" prompt += "After understanding the ABSTRACT, SUGGEST 4 IMPORTANT FINDINGS or ORIGINAL CONTRIBUTIONS of OBSERVATIONs that summarizes the work.\n" prompt += "Each BULLET POINT must be be less than 15 WORDS. \n" prompt += "Output the FOUR KEY FINDINGS as BULLET POINTS with UNDERLINE OR BOLDEN KEY PHRASES.\n" prompt += "Propose ONE CREATIVE ACTIONABLE IDEA for FUTURE extension of the RESEARCH\n. You MUST output the CREATIVE IDEA with a BULB OR IDEA OR THINKING emoji.\n" prompt += "Output ONE CREATIVE IDEA for FUTURE extension with a RANDOM emoji\n" prompt += "Choose an UNRELATED or ORTHOGONAL field where the FINDINGS of the article can be applied.\n" prompt += "In a new line, OUTPUT ONE CRAZY IDEA in 20 WORDS how the KEY FINDINGS of RESEARCH article can be applied in an ORTHOGONAL or UNRELATED FIELD with a CRAZY IDEA emoji \n" prompt += "User:" + message + "\n" mock_prompt = "" if system_prompt == "": mock_prompt += f"System: {system_prompt}\n" for user_prompt, bot_response in history: mock_prompt += f"User: {user_prompt}\n" mock_prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " mock_prompt += f"""User: {message} Falcon:""" return prompt seed = 42 def generate( prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) global seed generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stop_sequences=STOP_SEQUENCES, do_sample=True, seed=seed, ) seed = seed + 1 title = "INPUT ARXI ID" abstract = "" if prompt in id_dict: title = id_dict[prompt]['title'] abstract = id_dict[prompt]['abstract'] prompt = f"TITLE: {title} ABSTRACT: {abstract}\n" output = f"Title: {title} \n
" formatted_prompt = format_prompt(prompt, history, system_prompt) else: keyword = prompt counter= 0 for d in id_dict: title = id_dict[d]['title'] abstract = id_dict[d]['abstract'] if keyword in title or keyword in abstract: counter+=1## its a hit prompt += "ARTICLE " + str(counter) + "\n" prompt += f"TITLE: {title} ABSTRACT: {abstract}\n" if counter >= 4: break prompt += "Keyword: " + keyword + "\n" formatted_prompt = format_prompt_summarize(prompt, history, system_prompt, keyword) output = "Articles related to the keyword " + keyword + "\n" stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) #output = "" for response in stream: output += response.token.text for stop_str in STOP_SEQUENCES: if output.endswith(stop_str): output = output[:-len(stop_str)] output = output.rstrip() yield output yield output return output additional_inputs=[ gr.Textbox("", label="Optional system prompt"), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=8192, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=0.4): gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False) with gr.Column(): gr.Markdown( """ # ** The idea is inspired by CREATIVE WHACK PACK https://apps.apple.com/us/app/creative-whack-pack/id307306326 ** ##Researchers need INSPIRATION to come up with CREATIVE IDEAS. ** ###We use Falcon 180B to
- generate a SUMMARY of the arxiv articles (only August articles are supported)
- generate a CREATIVE IDEA for future extension
- generate a CRAZY IDEA for application in an orthogonal field. This should hopefully CONNECT unrelated fields and inspire researchers to come up with CREATIVE IDEAS. ## Please input ARXIV ID or a query, see examples below (limited to 15K articles from August 2023) ➡️️ **Intended Use**: this demo is intended to showcase how LLMs can be used to generate creative ideas for future extension and application in orthogonal field. ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words. """ ) gr.ChatInterface( generate, examples=EXAMPLES, additional_inputs=additional_inputs, ) demo.queue(concurrency_count=100, api_open=False).launch(show_api=False)