Spaces:
Running
on
T4
Running
on
T4
File size: 18,330 Bytes
109a0c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
import os, copy, types, gc, sys, re, time, collections, asyncio
from huggingface_hub import hf_hub_download
from loguru import logger
from snowflake import SnowflakeGenerator
CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
from typing import List, Optional, Union
from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings
class Config(BaseSettings, cli_parse_args=True, cli_use_class_docs_for_groups=True):
HOST: str = Field("127.0.0.1", description="Host")
PORT: int = Field(8000, description="Port")
DEBUG: bool = Field(False, description="Debug mode")
STRATEGY: str = Field("cpu", description="Stratergy")
MODEL_TITLE: str = Field("RWKV-x070-World-0.1B-v2.8-20241210-ctx4096")
DOWNLOAD_REPO_ID: str = Field("BlinkDL/rwkv-7-world")
DOWNLOAD_MODEL_DIR: Union[str, None] = Field(None, description="Model Download Dir")
MODEL_FILE_PATH: Union[str, None] = Field(None, description="Model Path")
GEN_penalty_decay: float = Field(0.996, description="Default penalty decay")
CHUNK_LEN: int = Field(
256,
description="split input into chunks to save VRAM (shorter -> slower, but saves VRAM)",
)
VOCAB: str = Field("rwkv_vocab_v20230424", description="Vocab Name")
CONFIG = Config()
import numpy as np
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
os.environ["RWKV_V7_ON"] = "1" # enable this for rwkv-7 models
os.environ["RWKV_JIT_ON"] = "1"
os.environ["RWKV_CUDA_ON"] = (
"0" # !!! '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries !!!
)
from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from api_types import (
ChatMessage,
ChatCompletion,
ChatCompletionChunk,
Usage,
PromptTokensDetails,
ChatCompletionChoice,
ChatCompletionMessage,
)
from utils import cleanMessages, parse_think_response
logger.info(f"STRATEGY - {CONFIG.STRATEGY}")
if CONFIG.MODEL_FILE_PATH == None:
CONFIG.MODEL_FILE_PATH = hf_hub_download(
repo_id=CONFIG.DOWNLOAD_REPO_ID,
filename=f"{CONFIG.MODEL_TITLE}.pth",
local_dir=CONFIG.DOWNLOAD_MODEL_DIR,
)
logger.info(f"Load Model - {CONFIG.MODEL_FILE_PATH}")
model = RWKV(model=CONFIG.MODEL_FILE_PATH.replace(".pth", ""), strategy=CONFIG.STRATEGY)
pipeline = PIPELINE(model, CONFIG.VOCAB)
class ChatCompletionRequest(BaseModel):
model: str = Field(
default="rwkv-latest",
description="Add `:thinking` suffix to the model name to enable reasoning. Example: `rwkv-latest:thinking`",
)
messages: List[ChatMessage]
prompt: Union[str, None] = Field(default=None)
max_tokens: int = Field(default=512)
temperature: float = Field(default=1.0)
top_p: float = Field(default=0.3)
presencePenalty: float = Field(default=0.5)
countPenalty: float = Field(default=0.5)
stream: bool = Field(default=False)
state_name: str = Field(default=None)
include_usage: bool = Field(default=False)
app = FastAPI(title="RWKV OpenAI-Compatible API")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def runPrefill(ctx: str, model_tokens: List[int], model_state):
ctx = ctx.replace("\r\n", "\n")
tokens = pipeline.encode(ctx)
tokens = [int(x) for x in tokens]
model_tokens += tokens
while len(tokens) > 0:
out, model_state = model.forward(tokens[: CONFIG.CHUNK_LEN], model_state)
tokens = tokens[CONFIG.CHUNK_LEN :]
return out, model_tokens, model_state
def generate(
request: ChatCompletionRequest,
out,
model_tokens,
model_state,
stops=["\n\n"],
max_tokens=2048,
):
args = PIPELINE_ARGS(
temperature=max(0.2, request.temperature),
top_p=request.top_p,
alpha_frequency=request.countPenalty,
alpha_presence=request.presencePenalty,
token_ban=[], # ban the generation of some tokens
token_stop=[0],
) # stop generation whenever you see any token here
occurrence = {}
out_tokens = []
out_last = 0
output_cache = collections.deque(maxlen=5)
for i in range(max_tokens):
for n in occurrence:
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
out[0] -= 1e10 # disable END_OF_TEXT
token = pipeline.sample_logits(
out, temperature=args.temperature, top_p=args.top_p
)
out, model_state = model.forward([token], model_state)
model_tokens += [token]
out_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= CONFIG.GEN_penalty_decay
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
tmp: str = pipeline.decode(out_tokens[out_last:])
if "\ufffd" in tmp:
continue
output_cache.append(tmp)
output_cache_str = "".join(output_cache)
for stop_words in stops:
if stop_words in output_cache_str:
yield {
"content": tmp.replace(stop_words, ""),
"tokens": out_tokens[out_last:],
"finish_reason": "stop",
"state": model_state,
}
del out
gc.collect()
return
yield {
"content": tmp,
"tokens": out_tokens[out_last:],
"finish_reason": None,
}
out_last = i + 1
else:
yield {
"content": "",
"tokens": [],
"finish_reason": "length",
}
async def chatResponse(
request: ChatCompletionRequest, model_state: any, completionId: str
) -> ChatCompletion:
createTimestamp = time.time()
enableReasoning = request.model.endswith(":thinking")
prompt = (
f"{cleanMessages(request.messages)}\n\nAssistant:{' <think' if enableReasoning else ''}"
if request.prompt == None
else request.prompt.strip()
)
out, model_tokens, model_state = runPrefill(prompt, [], model_state)
prefillTime = time.time()
promptTokenCount = len(model_tokens)
fullResponse = " <think" if enableReasoning else ""
completionTokenCount = 0
finishReason = None
for chunk in generate(
request,
out,
model_tokens,
model_state,
max_tokens=(
64000
if "max_tokens" not in request.model_fields_set and enableReasoning
else request.max_tokens
),
):
fullResponse += chunk["content"]
completionTokenCount += 1
if chunk["finish_reason"]:
finishReason = chunk["finish_reason"]
await asyncio.sleep(0)
genenrateTime = time.time()
responseLog = {
"content": fullResponse,
"finish": finishReason,
"prefill_len": promptTokenCount,
"prefill_tps": round(promptTokenCount / (prefillTime - createTimestamp), 2),
"gen_len": completionTokenCount,
"gen_tps": round(completionTokenCount / (genenrateTime - prefillTime), 2),
}
logger.info(f"[RES] {completionId} - {responseLog}")
reasoning_content, content = parse_think_response(fullResponse)
response = ChatCompletion(
id=completionId,
created=int(createTimestamp),
model=request.model,
usage=Usage(
prompt_tokens=promptTokenCount,
completion_tokens=completionTokenCount,
total_tokens=promptTokenCount + completionTokenCount,
prompt_tokens_details={"cached_tokens": 0},
),
choices=[
ChatCompletionChoice(
index=0,
message=ChatCompletionMessage(
role="Assistant",
content=content,
reasoning_content=reasoning_content if reasoning_content else None,
),
logprobs=None,
finish_reason=finishReason,
)
],
)
return response
async def chatResponseStream(
request: ChatCompletionRequest, model_state: any, completionId: str
):
createTimestamp = int(time.time())
enableReasoning = request.model.endswith(":thinking")
prompt = (
f"{cleanMessages(request.messages)}\n\nAssistant:{' <think' if enableReasoning else ''}"
if request.prompt == None
else request.prompt.strip()
)
out, model_tokens, model_state = runPrefill(prompt, [], model_state)
prefillTime = time.time()
promptTokenCount = len(model_tokens)
completionTokenCount = 0
finishReason = None
response = ChatCompletionChunk(
id=completionId,
created=createTimestamp,
model=request.model,
usage=(
Usage(
prompt_tokens=promptTokenCount,
completion_tokens=completionTokenCount,
total_tokens=promptTokenCount + completionTokenCount,
prompt_tokens_details={"cached_tokens": 0},
)
if request.include_usage
else None
),
choices=[
ChatCompletionChoice(
index=0,
delta=ChatCompletionMessage(
role="Assistant",
content="",
reasoning_content="" if enableReasoning else None,
),
logprobs=None,
finish_reason=finishReason,
)
],
)
yield f"data: {response.model_dump_json()}\n\n"
buffer = []
if enableReasoning:
buffer.append(" <think")
streamConfig = {
"isChecking": False,
"fullTextCursor": 0,
"in_think": False,
"cacheStr": "",
}
for chunk in generate(
request,
out,
model_tokens,
model_state,
max_tokens=(
64000
if "max_tokens" not in request.model_fields_set and enableReasoning
else request.max_tokens
),
):
completionTokenCount += 1
chunkContent: str = chunk["content"]
buffer.append(chunkContent)
fullText = "".join(buffer)
if chunk["finish_reason"]:
finishReason = chunk["finish_reason"]
response = ChatCompletionChunk(
id=completionId,
created=createTimestamp,
model=request.model,
usage=(
Usage(
prompt_tokens=promptTokenCount,
completion_tokens=completionTokenCount,
total_tokens=promptTokenCount + completionTokenCount,
prompt_tokens_details={"cached_tokens": 0},
)
if request.include_usage
else None
),
choices=[
ChatCompletionChoice(
index=0,
delta=ChatCompletionMessage(
content=None, reasoning_content=None
),
logprobs=None,
finish_reason=finishReason,
)
],
)
markStart = fullText.find("<", streamConfig["fullTextCursor"])
if not streamConfig["isChecking"] and markStart != -1:
streamConfig["isChecking"] = True
if streamConfig["in_think"]:
response.choices[0].delta.reasoning_content = fullText[
streamConfig["fullTextCursor"] : markStart
]
else:
response.choices[0].delta.content = fullText[
streamConfig["fullTextCursor"] : markStart
]
streamConfig["cacheStr"] = ""
streamConfig["fullTextCursor"] = markStart
if streamConfig["isChecking"]:
streamConfig["cacheStr"] = fullText[streamConfig["fullTextCursor"] :]
else:
if streamConfig["in_think"]:
response.choices[0].delta.reasoning_content = chunkContent
else:
response.choices[0].delta.content = chunkContent
streamConfig["fullTextCursor"] = len(fullText)
markEnd = fullText.find(">", streamConfig["fullTextCursor"])
if streamConfig["isChecking"] and markEnd != -1:
streamConfig["isChecking"] = False
if (
not streamConfig["in_think"]
and streamConfig["cacheStr"].find("<think>") != -1
):
streamConfig["in_think"] = True
response.choices[0].delta.reasoning_content = (
response.choices[0].delta.reasoning_content
if response.choices[0].delta.reasoning_content != None
else "" + streamConfig["cacheStr"].replace("<think>", "")
)
elif (
streamConfig["in_think"]
and streamConfig["cacheStr"].find("</think>") != -1
):
streamConfig["in_think"] = False
response.choices[0].delta.content = (
response.choices[0].delta.content
if response.choices[0].delta.content != None
else "" + streamConfig["cacheStr"].replace("</think>", "")
)
else:
if streamConfig["in_think"]:
response.choices[0].delta.reasoning_content = (
response.choices[0].delta.reasoning_content
if response.choices[0].delta.reasoning_content != None
else "" + streamConfig["cacheStr"]
)
else:
response.choices[0].delta.content = (
response.choices[0].delta.content
if response.choices[0].delta.content != None
else "" + streamConfig["cacheStr"]
)
streamConfig["fullTextCursor"] = len(fullText)
if (
response.choices[0].delta.content != None
or response.choices[0].delta.reasoning_content != None
):
yield f"data: {response.model_dump_json()}\n\n"
await asyncio.sleep(0)
del streamConfig
else:
for chunk in generate(request, out, model_tokens, model_state):
completionTokenCount += 1
buffer.append(chunk["content"])
if chunk["finish_reason"]:
finishReason = chunk["finish_reason"]
response = ChatCompletionChunk(
id=completionId,
created=createTimestamp,
model=request.model,
usage=(
Usage(
prompt_tokens=promptTokenCount,
completion_tokens=completionTokenCount,
total_tokens=promptTokenCount + completionTokenCount,
prompt_tokens_details={"cached_tokens": 0},
)
if request.include_usage
else None
),
choices=[
ChatCompletionChoice(
index=0,
delta=ChatCompletionMessage(content=chunk["content"]),
logprobs=None,
finish_reason=finishReason,
)
],
)
yield f"data: {response.model_dump_json()}\n\n"
await asyncio.sleep(0)
genenrateTime = time.time()
responseLog = {
"content": "".join(buffer),
"finish": finishReason,
"prefill_len": promptTokenCount,
"prefill_tps": round(promptTokenCount / (prefillTime - createTimestamp), 2),
"gen_len": completionTokenCount,
"gen_tps": round(completionTokenCount / (genenrateTime - prefillTime), 2),
}
logger.info(f"[RES] {completionId} - {responseLog}")
del buffer
yield "data: [DONE]\n\n"
@app.post("/api/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
completionId = str(next(CompletionIdGenerator))
logger.info(f"[REQ] {completionId} - {request.model_dump()}")
def chatResponseStreamDisconnect():
gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
logger.info(
f"[STATUS] vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}"
)
model_state = None
if request.stream:
r = StreamingResponse(
chatResponseStream(request, model_state, completionId),
media_type="text/event-stream",
background=chatResponseStreamDisconnect,
)
else:
r = await chatResponse(request, model_state, completionId)
return r
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT)
|