File size: 18,330 Bytes
109a0c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import os, copy, types, gc, sys, re, time, collections, asyncio
from huggingface_hub import hf_hub_download
from loguru import logger

from snowflake import SnowflakeGenerator

CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595)

from pynvml import *

nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)

from typing import List, Optional, Union
from pydantic import BaseModel, Field
from pydantic_settings import BaseSettings


class Config(BaseSettings, cli_parse_args=True, cli_use_class_docs_for_groups=True):
    HOST: str = Field("127.0.0.1", description="Host")
    PORT: int = Field(8000, description="Port")
    DEBUG: bool = Field(False, description="Debug mode")
    STRATEGY: str = Field("cpu", description="Stratergy")
    MODEL_TITLE: str = Field("RWKV-x070-World-0.1B-v2.8-20241210-ctx4096")
    DOWNLOAD_REPO_ID: str = Field("BlinkDL/rwkv-7-world")
    DOWNLOAD_MODEL_DIR: Union[str, None] = Field(None, description="Model Download Dir")
    MODEL_FILE_PATH: Union[str, None] = Field(None, description="Model Path")
    GEN_penalty_decay: float = Field(0.996, description="Default penalty decay")
    CHUNK_LEN: int = Field(
        256,
        description="split input into chunks to save VRAM (shorter -> slower, but saves VRAM)",
    )
    VOCAB: str = Field("rwkv_vocab_v20230424", description="Vocab Name")


CONFIG = Config()


import numpy as np
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
os.environ["RWKV_V7_ON"] = "1"  # enable this for rwkv-7 models
os.environ["RWKV_JIT_ON"] = "1"
os.environ["RWKV_CUDA_ON"] = (
    "0"  # !!! '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries !!!
)

from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS

from fastapi import FastAPI
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware

from api_types import (
    ChatMessage,
    ChatCompletion,
    ChatCompletionChunk,
    Usage,
    PromptTokensDetails,
    ChatCompletionChoice,
    ChatCompletionMessage,
)
from utils import cleanMessages, parse_think_response


logger.info(f"STRATEGY - {CONFIG.STRATEGY}")
if CONFIG.MODEL_FILE_PATH == None:
    CONFIG.MODEL_FILE_PATH = hf_hub_download(
        repo_id=CONFIG.DOWNLOAD_REPO_ID,
        filename=f"{CONFIG.MODEL_TITLE}.pth",
        local_dir=CONFIG.DOWNLOAD_MODEL_DIR,
    )

logger.info(f"Load Model - {CONFIG.MODEL_FILE_PATH}")
model = RWKV(model=CONFIG.MODEL_FILE_PATH.replace(".pth", ""), strategy=CONFIG.STRATEGY)
pipeline = PIPELINE(model, CONFIG.VOCAB)


class ChatCompletionRequest(BaseModel):
    model: str = Field(
        default="rwkv-latest",
        description="Add `:thinking` suffix to the model name to enable reasoning. Example: `rwkv-latest:thinking`",
    )
    messages: List[ChatMessage]
    prompt: Union[str, None] = Field(default=None)
    max_tokens: int = Field(default=512)
    temperature: float = Field(default=1.0)
    top_p: float = Field(default=0.3)
    presencePenalty: float = Field(default=0.5)
    countPenalty: float = Field(default=0.5)
    stream: bool = Field(default=False)
    state_name: str = Field(default=None)
    include_usage: bool = Field(default=False)


app = FastAPI(title="RWKV OpenAI-Compatible API")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


def runPrefill(ctx: str, model_tokens: List[int], model_state):
    ctx = ctx.replace("\r\n", "\n")

    tokens = pipeline.encode(ctx)
    tokens = [int(x) for x in tokens]
    model_tokens += tokens

    while len(tokens) > 0:
        out, model_state = model.forward(tokens[: CONFIG.CHUNK_LEN], model_state)
        tokens = tokens[CONFIG.CHUNK_LEN :]

    return out, model_tokens, model_state


def generate(

    request: ChatCompletionRequest,

    out,

    model_tokens,

    model_state,

    stops=["\n\n"],

    max_tokens=2048,

):
    args = PIPELINE_ARGS(
        temperature=max(0.2, request.temperature),
        top_p=request.top_p,
        alpha_frequency=request.countPenalty,
        alpha_presence=request.presencePenalty,
        token_ban=[],  # ban the generation of some tokens
        token_stop=[0],
    )  # stop generation whenever you see any token here

    occurrence = {}
    out_tokens = []
    out_last = 0

    output_cache = collections.deque(maxlen=5)

    for i in range(max_tokens):
        for n in occurrence:
            out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
        out[0] -= 1e10  # disable END_OF_TEXT

        token = pipeline.sample_logits(
            out, temperature=args.temperature, top_p=args.top_p
        )

        out, model_state = model.forward([token], model_state)
        model_tokens += [token]

        out_tokens += [token]

        for xxx in occurrence:
            occurrence[xxx] *= CONFIG.GEN_penalty_decay
        occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)

        tmp: str = pipeline.decode(out_tokens[out_last:])

        if "\ufffd" in tmp:
            continue

        output_cache.append(tmp)
        output_cache_str = "".join(output_cache)

        for stop_words in stops:
            if stop_words in output_cache_str:

                yield {
                    "content": tmp.replace(stop_words, ""),
                    "tokens": out_tokens[out_last:],
                    "finish_reason": "stop",
                    "state": model_state,
                }

                del out
                gc.collect()
                return

        yield {
            "content": tmp,
            "tokens": out_tokens[out_last:],
            "finish_reason": None,
        }

        out_last = i + 1

    else:
        yield {
            "content": "",
            "tokens": [],
            "finish_reason": "length",
        }


async def chatResponse(

    request: ChatCompletionRequest, model_state: any, completionId: str

) -> ChatCompletion:
    createTimestamp = time.time()

    enableReasoning = request.model.endswith(":thinking")

    prompt = (
        f"{cleanMessages(request.messages)}\n\nAssistant:{' <think' if enableReasoning else ''}"
        if request.prompt == None
        else request.prompt.strip()
    )

    out, model_tokens, model_state = runPrefill(prompt, [], model_state)

    prefillTime = time.time()
    promptTokenCount = len(model_tokens)

    fullResponse = " <think" if enableReasoning else ""
    completionTokenCount = 0
    finishReason = None

    for chunk in generate(
        request,
        out,
        model_tokens,
        model_state,
        max_tokens=(
            64000
            if "max_tokens" not in request.model_fields_set and enableReasoning
            else request.max_tokens
        ),
    ):
        fullResponse += chunk["content"]
        completionTokenCount += 1

        if chunk["finish_reason"]:
            finishReason = chunk["finish_reason"]
        await asyncio.sleep(0)

    genenrateTime = time.time()

    responseLog = {
        "content": fullResponse,
        "finish": finishReason,
        "prefill_len": promptTokenCount,
        "prefill_tps": round(promptTokenCount / (prefillTime - createTimestamp), 2),
        "gen_len": completionTokenCount,
        "gen_tps": round(completionTokenCount / (genenrateTime - prefillTime), 2),
    }
    logger.info(f"[RES] {completionId} - {responseLog}")

    reasoning_content, content = parse_think_response(fullResponse)

    response = ChatCompletion(
        id=completionId,
        created=int(createTimestamp),
        model=request.model,
        usage=Usage(
            prompt_tokens=promptTokenCount,
            completion_tokens=completionTokenCount,
            total_tokens=promptTokenCount + completionTokenCount,
            prompt_tokens_details={"cached_tokens": 0},
        ),
        choices=[
            ChatCompletionChoice(
                index=0,
                message=ChatCompletionMessage(
                    role="Assistant",
                    content=content,
                    reasoning_content=reasoning_content if reasoning_content else None,
                ),
                logprobs=None,
                finish_reason=finishReason,
            )
        ],
    )

    return response


async def chatResponseStream(

    request: ChatCompletionRequest, model_state: any, completionId: str

):
    createTimestamp = int(time.time())

    enableReasoning = request.model.endswith(":thinking")

    prompt = (
        f"{cleanMessages(request.messages)}\n\nAssistant:{' <think' if enableReasoning else ''}"
        if request.prompt == None
        else request.prompt.strip()
    )

    out, model_tokens, model_state = runPrefill(prompt, [], model_state)

    prefillTime = time.time()
    promptTokenCount = len(model_tokens)

    completionTokenCount = 0
    finishReason = None

    response = ChatCompletionChunk(
        id=completionId,
        created=createTimestamp,
        model=request.model,
        usage=(
            Usage(
                prompt_tokens=promptTokenCount,
                completion_tokens=completionTokenCount,
                total_tokens=promptTokenCount + completionTokenCount,
                prompt_tokens_details={"cached_tokens": 0},
            )
            if request.include_usage
            else None
        ),
        choices=[
            ChatCompletionChoice(
                index=0,
                delta=ChatCompletionMessage(
                    role="Assistant",
                    content="",
                    reasoning_content="" if enableReasoning else None,
                ),
                logprobs=None,
                finish_reason=finishReason,
            )
        ],
    )
    yield f"data: {response.model_dump_json()}\n\n"

    buffer = []

    if enableReasoning:
        buffer.append(" <think")

        streamConfig = {
            "isChecking": False,
            "fullTextCursor": 0,
            "in_think": False,
            "cacheStr": "",
        }

        for chunk in generate(
            request,
            out,
            model_tokens,
            model_state,
            max_tokens=(
                64000
                if "max_tokens" not in request.model_fields_set and enableReasoning
                else request.max_tokens
            ),
        ):
            completionTokenCount += 1

            chunkContent: str = chunk["content"]
            buffer.append(chunkContent)

            fullText = "".join(buffer)

            if chunk["finish_reason"]:
                finishReason = chunk["finish_reason"]

            response = ChatCompletionChunk(
                id=completionId,
                created=createTimestamp,
                model=request.model,
                usage=(
                    Usage(
                        prompt_tokens=promptTokenCount,
                        completion_tokens=completionTokenCount,
                        total_tokens=promptTokenCount + completionTokenCount,
                        prompt_tokens_details={"cached_tokens": 0},
                    )
                    if request.include_usage
                    else None
                ),
                choices=[
                    ChatCompletionChoice(
                        index=0,
                        delta=ChatCompletionMessage(
                            content=None, reasoning_content=None
                        ),
                        logprobs=None,
                        finish_reason=finishReason,
                    )
                ],
            )

            markStart = fullText.find("<", streamConfig["fullTextCursor"])
            if not streamConfig["isChecking"] and markStart != -1:
                streamConfig["isChecking"] = True

                if streamConfig["in_think"]:
                    response.choices[0].delta.reasoning_content = fullText[
                        streamConfig["fullTextCursor"] : markStart
                    ]
                else:
                    response.choices[0].delta.content = fullText[
                        streamConfig["fullTextCursor"] : markStart
                    ]

                streamConfig["cacheStr"] = ""
                streamConfig["fullTextCursor"] = markStart

            if streamConfig["isChecking"]:
                streamConfig["cacheStr"] = fullText[streamConfig["fullTextCursor"] :]
            else:
                if streamConfig["in_think"]:
                    response.choices[0].delta.reasoning_content = chunkContent
                else:
                    response.choices[0].delta.content = chunkContent
                streamConfig["fullTextCursor"] = len(fullText)

            markEnd = fullText.find(">", streamConfig["fullTextCursor"])
            if streamConfig["isChecking"] and markEnd != -1:
                streamConfig["isChecking"] = False

                if (
                    not streamConfig["in_think"]
                    and streamConfig["cacheStr"].find("<think>") != -1
                ):
                    streamConfig["in_think"] = True

                    response.choices[0].delta.reasoning_content = (
                        response.choices[0].delta.reasoning_content
                        if response.choices[0].delta.reasoning_content != None
                        else "" + streamConfig["cacheStr"].replace("<think>", "")
                    )

                elif (
                    streamConfig["in_think"]
                    and streamConfig["cacheStr"].find("</think>") != -1
                ):
                    streamConfig["in_think"] = False

                    response.choices[0].delta.content = (
                        response.choices[0].delta.content
                        if response.choices[0].delta.content != None
                        else "" + streamConfig["cacheStr"].replace("</think>", "")
                    )
                else:
                    if streamConfig["in_think"]:
                        response.choices[0].delta.reasoning_content = (
                            response.choices[0].delta.reasoning_content
                            if response.choices[0].delta.reasoning_content != None
                            else "" + streamConfig["cacheStr"]
                        )
                    else:
                        response.choices[0].delta.content = (
                            response.choices[0].delta.content
                            if response.choices[0].delta.content != None
                            else "" + streamConfig["cacheStr"]
                        )
                streamConfig["fullTextCursor"] = len(fullText)

            if (
                response.choices[0].delta.content != None
                or response.choices[0].delta.reasoning_content != None
            ):
                yield f"data: {response.model_dump_json()}\n\n"

            await asyncio.sleep(0)

        del streamConfig
    else:
        for chunk in generate(request, out, model_tokens, model_state):
            completionTokenCount += 1
            buffer.append(chunk["content"])

            if chunk["finish_reason"]:
                finishReason = chunk["finish_reason"]

            response = ChatCompletionChunk(
                id=completionId,
                created=createTimestamp,
                model=request.model,
                usage=(
                    Usage(
                        prompt_tokens=promptTokenCount,
                        completion_tokens=completionTokenCount,
                        total_tokens=promptTokenCount + completionTokenCount,
                        prompt_tokens_details={"cached_tokens": 0},
                    )
                    if request.include_usage
                    else None
                ),
                choices=[
                    ChatCompletionChoice(
                        index=0,
                        delta=ChatCompletionMessage(content=chunk["content"]),
                        logprobs=None,
                        finish_reason=finishReason,
                    )
                ],
            )

            yield f"data: {response.model_dump_json()}\n\n"
            await asyncio.sleep(0)

    genenrateTime = time.time()

    responseLog = {
        "content": "".join(buffer),
        "finish": finishReason,
        "prefill_len": promptTokenCount,
        "prefill_tps": round(promptTokenCount / (prefillTime - createTimestamp), 2),
        "gen_len": completionTokenCount,
        "gen_tps": round(completionTokenCount / (genenrateTime - prefillTime), 2),
    }
    logger.info(f"[RES] {completionId} - {responseLog}")

    del buffer

    yield "data: [DONE]\n\n"





@app.post("/api/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):
    completionId = str(next(CompletionIdGenerator))
    logger.info(f"[REQ] {completionId} - {request.model_dump()}")

    def chatResponseStreamDisconnect():  
        gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
        logger.info(
        f"[STATUS] vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}"
    )

    model_state = None

    if request.stream:
        r = StreamingResponse(
            chatResponseStream(request, model_state, completionId),
            media_type="text/event-stream",
            background=chatResponseStreamDisconnect,
        )
    else:
        r = await chatResponse(request, model_state, completionId)


    return r


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT)