RJuro commited on
Commit
9ae6359
Β·
verified Β·
1 Parent(s): c3a4fb9

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +103 -0
app.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import joblib
5
+ from xgboost import XGBRegressor
6
+ from sklearn.preprocessing import StandardScaler, OneHotEncoder
7
+ import shap
8
+ from streamlit_shap import st_shap
9
+
10
+ # Page configuration
11
+ st.set_page_config(
12
+ page_title="Airbnb Price Prediction in Copenhagen",
13
+ page_icon="🏠")
14
+
15
+ st.title('Predict Airbnb Prices in Copenhagen')
16
+
17
+ # Display an image
18
+ st.image('https://gdkfiles.visitdenmark.com/files/382/164757_Nyhavn_Jacob-Schjrring-og-Simon-Lau.jpg?width=987', caption='Copenhagen', use_column_width=True)
19
+
20
+ # Load model and preprocessing objects
21
+ @st.cache_resource
22
+ def load_model_objects():
23
+ model_xgb = joblib.load('model_xgb.joblib')
24
+ scaler = joblib.load('scaler.joblib')
25
+ ohe = joblib.load('ohe.joblib')
26
+ return model_xgb, scaler, ohe
27
+
28
+ model_xgb, scaler, ohe = load_model_objects()
29
+
30
+ # Create SHAP explainer
31
+ explainer = shap.TreeExplainer(model_xgb)
32
+
33
+ # App description
34
+ with st.expander("What's this app?"):
35
+ st.markdown("""
36
+ This app helps you determine an appropriate nightly rate for your Airbnb listing in Copenhagen.
37
+ We've trained an AI model on successful listings in Copenhagen to provide pricing suggestions based on a few key inputs.
38
+ Our recommendation is to adjust the suggested price by about Β±350 DKK depending on your specific amenities and the quality of your place.
39
+ As a bonus feature 🌟, we've included an AI explainer πŸ€– to help you understand the factors influencing the predicted price.
40
+ """)
41
+
42
+ st.subheader('Describe your place')
43
+
44
+ # User inputs
45
+ col1, col2 = st.columns(2)
46
+
47
+ with col1:
48
+ n_hood = st.selectbox('Neighborhood', options=ohe.categories_[0])
49
+ room_type = st.radio('Room Type', options=ohe.categories_[1])
50
+ instant_bookable = st.checkbox('Instant Booking Available')
51
+ accommodates = st.number_input('Maximum Guests', min_value=1, max_value=16, value=2)
52
+
53
+ with col2:
54
+ bedrooms = st.number_input('Number of Bedrooms', min_value=0, max_value=10, value=1)
55
+ beds = st.number_input('Number of Beds', min_value=1, max_value=16, value=1)
56
+ min_nights = st.number_input('Minimum Nights Stay', min_value=1, max_value=30, value=1)
57
+
58
+ # Prediction button
59
+ if st.button('Predict Price πŸš€'):
60
+ # Prepare categorical features
61
+ cat_features = pd.DataFrame({'neighbourhood_cleansed': [n_hood], 'room_type': [room_type]})
62
+ cat_encoded = pd.DataFrame(ohe.transform(cat_features).todense(),
63
+ columns=ohe.get_feature_names_out(['neighbourhood_cleansed', 'room_type']))
64
+
65
+ # Prepare numerical features
66
+ num_features = pd.DataFrame({
67
+ 'instant_bookable': [instant_bookable],
68
+ 'accommodates': [accommodates],
69
+ 'bedrooms': [bedrooms],
70
+ 'beds': [beds],
71
+ 'minimum_nights_avg_ntm': [min_nights]
72
+ })
73
+ num_scaled = pd.DataFrame(scaler.transform(num_features), columns=num_features.columns)
74
+
75
+ # Combine features
76
+ features = pd.concat([num_scaled, cat_encoded], axis=1)
77
+
78
+ # Make prediction
79
+ predicted_price = model_xgb.predict(features)[0]
80
+
81
+ # Display prediction
82
+ st.metric(label="Predicted price per night", value=f'{round(predicted_price)} DKK')
83
+
84
+ # Calculate and display price range
85
+ lower_range = max(0, round(predicted_price - 350))
86
+ upper_range = round(predicted_price + 350)
87
+ st.write(f"Suggested price range: {lower_range} - {upper_range} DKK")
88
+
89
+ # SHAP explanation
90
+ st.subheader('Price Factors Explained πŸ€–')
91
+ shap_values = explainer.shap_values(features)
92
+ st_shap(shap.force_plot(explainer.expected_value, shap_values, features), height=400, width=600)
93
+
94
+ st.markdown("""
95
+ This plot shows how each feature contributes to the predicted price:
96
+ - Blue bars push the price lower
97
+ - Red bars push the price higher
98
+ - The length of each bar indicates the strength of the feature's impact
99
+ """)
100
+
101
+ # Footer
102
+ st.markdown("---")
103
+ st.markdown("Developed with ❀️ using Streamlit and AI")