import streamlit as st import transformers import torch # Load the model and tokenizer model = transformers.AutoModelForSequenceClassification.from_pretrained("ikoghoemmanuell/finetuned_sentiment_model") tokenizer = transformers.AutoTokenizer.from_pretrained("ikoghoemmanuell/finetuned_sentiment_tokenizer") # Define the function for sentiment analysis @st.cache_resource def predict_sentiment(text): # Tokenize the input text inputs = tokenizer(text, return_tensors="pt") # Pass the tokenized input through the model outputs = model(**inputs) # Get the predicted class and return the corresponding sentiment predicted_class = torch.argmax(outputs.logits, dim=-1).item() if predicted_class == 0: return "Negative" elif predicted_class == 1: return "Neutral" else: return "Positive" # Setting the page configurations st.set_page_config( page_title="Sentiment Analysis App", page_icon=":smile:", layout="wide", initial_sidebar_state="auto", ) # Add description and title st.write(""" # How Positive or Negative is your Text? Enter some text and we'll tell you if it has a positive, negative, or neutral sentiment! """) # Add image image = st.image("https://i0.wp.com/thedatascientist.com/wp-content/uploads/2018/10/sentiment-analysis.png", width=400) # Get user input text = st.text_input("Enter some text here:") # Define the CSS style for the app st.markdown( """ """, unsafe_allow_html=True ) # Show sentiment output if text: sentiment = predict_sentiment(text) if sentiment == "Positive": st.success(f"The sentiment is {sentiment}!") elif sentiment == "Negative": st.error(f"The sentiment is {sentiment}.") else: st.warning(f"The sentiment is {sentiment}.")