Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,54 @@
|
|
1 |
-
import requests
|
2 |
import gradio as gr
|
3 |
-
from
|
|
|
|
|
4 |
import logging
|
5 |
-
from pathlib import Path
|
6 |
-
from time import perf_counter
|
7 |
from sentence_transformers import CrossEncoder
|
8 |
-
from huggingface_hub import InferenceClient
|
9 |
-
from jinja2 import Environment, FileSystemLoader
|
10 |
-
import numpy as np
|
11 |
-
from os import getenv
|
12 |
-
from backend.query_llm import generate_hf, generate_qwen
|
13 |
from backend.semantic_search import table, retriever
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
# Bhashini API
|
18 |
-
|
19 |
-
|
20 |
|
21 |
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
22 |
"""Translates text from source language to target language using the Bhashini API."""
|
23 |
-
|
24 |
if not text.strip():
|
25 |
print('Input text is empty. Please provide valid text for translation.')
|
26 |
-
return {"status_code": 400, "message": "Input text is empty", "translated_content": None
|
27 |
else:
|
28 |
-
print('Input text - ',text)
|
29 |
-
print(f'Starting translation process from {from_code} to {to_code}...')
|
30 |
print(f'Starting translation process from {from_code} to {to_code}...')
|
31 |
gr.Warning(f'Translating to {to_code}...')
|
32 |
|
33 |
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
|
34 |
headers = {
|
35 |
"Content-Type": "application/json",
|
36 |
-
"userID":
|
37 |
-
"ulcaApiKey":
|
38 |
}
|
|
|
|
|
|
|
|
|
|
|
39 |
payload = {
|
40 |
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
41 |
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
|
@@ -45,11 +58,16 @@ def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") ->
|
|
45 |
response = requests.post(url, json=payload, headers=headers)
|
46 |
|
47 |
if response.status_code != 200:
|
48 |
-
print(f'Error in initial request: {response.status_code}')
|
49 |
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
|
50 |
|
51 |
print('Initial request successful, processing response...')
|
52 |
response_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
53 |
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
|
54 |
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
|
55 |
|
@@ -68,7 +86,7 @@ def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") ->
|
|
68 |
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
|
69 |
|
70 |
if compute_response.status_code != 200:
|
71 |
-
print(f'Error in translation request: {compute_response.status_code}')
|
72 |
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
|
73 |
|
74 |
print('Translation request successful, processing translation...')
|
@@ -78,157 +96,123 @@ def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") ->
|
|
78 |
print(f'Translation successful. Translated content: "{translated_content}"')
|
79 |
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
#
|
83 |
-
VECTOR_COLUMN_NAME = "vector"
|
84 |
-
TEXT_COLUMN_NAME = "text"
|
85 |
-
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
|
86 |
proj_dir = Path(__file__).parent
|
87 |
-
|
88 |
-
logging.basicConfig(level=logging.INFO)
|
89 |
-
logger = logging.getLogger(__name__)
|
90 |
-
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
|
91 |
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
|
|
|
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
# def add_text(history, text):
|
97 |
-
# history = [] if history is None else history
|
98 |
-
# history = history + [(text, None)]
|
99 |
-
# return history, gr.Textbox(value="", interactive=False)
|
100 |
-
|
101 |
-
def bot(history, cross_encoder):
|
102 |
-
|
103 |
top_rerank = 25
|
104 |
top_k_rank = 20
|
105 |
-
query = history[-1][0] if history else ''
|
106 |
-
print('\nQuery: ',query )
|
107 |
-
print('\nHistory:',history)
|
108 |
-
if not query:
|
109 |
-
gr.Warning("Please submit a non-empty string as a prompt")
|
110 |
-
raise ValueError("Empty string was submitted")
|
111 |
-
|
112 |
-
logger.warning('Retrieving documents...')
|
113 |
-
|
114 |
-
if cross_encoder == '(HIGH ACCURATE) ColBERT':
|
115 |
-
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
|
116 |
-
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
117 |
-
RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
118 |
-
documents_full = RAG_db.search(query, k=top_k_rank)
|
119 |
-
|
120 |
-
documents = [item['content'] for item in documents_full]
|
121 |
-
prompt = template.render(documents=documents, query=query)
|
122 |
-
prompt_html = template_html.render(documents=documents, query=query)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
history[-1][1] = ""
|
127 |
-
for character in generate_fn(prompt, history[:-1]):
|
128 |
-
history[-1][1] = character
|
129 |
-
yield history, prompt_html
|
130 |
-
else:
|
131 |
-
document_start = perf_counter()
|
132 |
|
|
|
|
|
|
|
|
|
133 |
query_vec = retriever.encode(query)
|
134 |
-
|
135 |
-
|
136 |
-
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
|
137 |
-
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
138 |
-
|
139 |
-
query_doc_pair = [[query, doc] for doc in documents]
|
140 |
-
if cross_encoder == '(FAST) MiniLM-L6v2':
|
141 |
-
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
142 |
-
elif cross_encoder == '(ACCURATE) BGE reranker':
|
143 |
-
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
144 |
|
145 |
-
|
|
|
|
|
|
|
146 |
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
147 |
-
|
148 |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
149 |
-
|
150 |
-
document_time = perf_counter() - document_start
|
151 |
-
|
152 |
-
prompt = template.render(documents=documents, query=query)
|
153 |
-
prompt_html = template_html.render(documents=documents, query=query)
|
154 |
-
|
155 |
-
#generate_fn = generate_hf
|
156 |
-
generate_fn=generate_qwen
|
157 |
-
# Create a new history entry instead of modifying the tuple directly
|
158 |
-
new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
|
159 |
-
output=''
|
160 |
-
# for character in generate_fn(prompt, history[:-1]):
|
161 |
-
# #new_history[-1] = (query, character)
|
162 |
-
# output+=character
|
163 |
-
output=generate_fn(prompt, history[:-1])
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
#print('prompt html',prompt_html)# Update the last tuple with new text
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
#
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
|
|
|
|
|
|
185 |
|
186 |
-
|
|
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
iso_language_codes = {
|
189 |
-
"Hindi": "hi",
|
190 |
-
"
|
191 |
-
"
|
192 |
-
"
|
193 |
-
"Bodo": "brx",
|
194 |
-
"Urdu": "ur",
|
195 |
-
"Tamil": "ta",
|
196 |
-
"Kashmiri": "ks",
|
197 |
-
"Assamese": "as",
|
198 |
-
"Bengali": "bn",
|
199 |
-
"Marathi": "mr",
|
200 |
-
"Sindhi": "sd",
|
201 |
-
"Maithili": "mai",
|
202 |
-
"Punjabi": "pa",
|
203 |
-
"Malayalam": "ml",
|
204 |
-
"Manipuri": "mni",
|
205 |
-
"Telugu": "te",
|
206 |
-
"Sanskrit": "sa",
|
207 |
-
"Nepali": "ne",
|
208 |
-
"Santali": "sat",
|
209 |
-
"Gujarati": "gu",
|
210 |
-
"Odia": "or"
|
211 |
}
|
212 |
|
213 |
to_code = iso_language_codes[selected_language]
|
214 |
-
response_text = history[-1][1] if history else ''
|
215 |
-
print('response_text for translation',response_text)
|
216 |
translation = bhashini_translate(response_text, to_code=to_code)
|
217 |
-
return translation
|
218 |
-
|
219 |
|
220 |
-
# Gradio
|
221 |
-
with gr.Blocks(theme='gradio/soft') as
|
222 |
-
|
223 |
with gr.Row():
|
224 |
with gr.Column(scale=10):
|
225 |
-
gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR
|
226 |
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
|
227 |
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
|
228 |
-
|
229 |
with gr.Column(scale=3):
|
230 |
-
|
|
|
|
|
|
|
231 |
|
|
|
232 |
chatbot = gr.Chatbot(
|
233 |
[],
|
234 |
elem_id="chatbot",
|
@@ -240,56 +224,345 @@ with gr.Blocks(theme='gradio/soft') as CHATBOT:
|
|
240 |
)
|
241 |
|
242 |
with gr.Row():
|
243 |
-
|
244 |
scale=3,
|
245 |
show_label=False,
|
246 |
placeholder="Enter text and press enter",
|
247 |
container=False,
|
248 |
)
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
language_dropdown = gr.Dropdown(
|
253 |
choices=[
|
254 |
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
|
255 |
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
|
256 |
"Gujarati", "Odia"
|
257 |
],
|
258 |
-
value="Hindi",
|
259 |
label="Select Language for Translation"
|
260 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
#history, prompt_html = bot_output[-1]
|
276 |
-
history, prompt_html = bot_output
|
277 |
-
print('History',history)
|
278 |
-
# Update the history state
|
279 |
-
history_state[:] = history
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
-
|
286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
|
288 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
-
|
|
|
291 |
|
|
|
|
|
292 |
|
293 |
-
#
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from phi.agent import Agent
|
3 |
+
from phi.model.groq import Groq
|
4 |
+
import os
|
5 |
import logging
|
|
|
|
|
6 |
from sentence_transformers import CrossEncoder
|
|
|
|
|
|
|
|
|
|
|
7 |
from backend.semantic_search import table, retriever
|
8 |
+
import numpy as np
|
9 |
+
from time import perf_counter
|
10 |
+
import requests
|
11 |
+
from jinja2 import Environment, FileSystemLoader
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
# Set up logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
|
18 |
+
# API Key setup
|
19 |
+
api_key = os.getenv("GROQ_API_KEY")
|
20 |
+
if not api_key:
|
21 |
+
gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
|
22 |
+
logger.error("GROQ_API_KEY not found.")
|
23 |
+
api_key = "" # Fallback to empty string, but this will fail without a key
|
24 |
+
else:
|
25 |
+
os.environ["GROQ_API_KEY"] = api_key
|
26 |
|
27 |
+
# Bhashini API setup
|
28 |
+
bhashini_api_key = os.getenv("API_KEY", "").strip()
|
29 |
+
bhashini_user_id = os.getenv("USER_ID", "").strip()
|
30 |
|
31 |
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
32 |
"""Translates text from source language to target language using the Bhashini API."""
|
|
|
33 |
if not text.strip():
|
34 |
print('Input text is empty. Please provide valid text for translation.')
|
35 |
+
return {"status_code": 400, "message": "Input text is empty", "translated_content": None}
|
36 |
else:
|
37 |
+
print('Input text - ', text)
|
|
|
38 |
print(f'Starting translation process from {from_code} to {to_code}...')
|
39 |
gr.Warning(f'Translating to {to_code}...')
|
40 |
|
41 |
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
|
42 |
headers = {
|
43 |
"Content-Type": "application/json",
|
44 |
+
"userID": bhashini_user_id,
|
45 |
+
"ulcaApiKey": bhashini_api_key
|
46 |
}
|
47 |
+
for key, value in headers.items():
|
48 |
+
if not isinstance(value, str) or '\n' in value or '\r' in value:
|
49 |
+
print(f"Invalid header value for {key}: {value}")
|
50 |
+
return {"status_code": 400, "message": f"Invalid header value for {key}", "translated_content": None}
|
51 |
+
|
52 |
payload = {
|
53 |
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
54 |
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
|
|
|
58 |
response = requests.post(url, json=payload, headers=headers)
|
59 |
|
60 |
if response.status_code != 200:
|
61 |
+
print(f'Error in initial request: {response.status_code}, Response: {response.text}')
|
62 |
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
|
63 |
|
64 |
print('Initial request successful, processing response...')
|
65 |
response_data = response.json()
|
66 |
+
print('Full response data:', response_data)
|
67 |
+
if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
|
68 |
+
print('Unexpected response structure:', response_data)
|
69 |
+
return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}
|
70 |
+
|
71 |
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
|
72 |
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
|
73 |
|
|
|
86 |
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
|
87 |
|
88 |
if compute_response.status_code != 200:
|
89 |
+
print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}')
|
90 |
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
|
91 |
|
92 |
print('Translation request successful, processing translation...')
|
|
|
96 |
print(f'Translation successful. Translated content: "{translated_content}"')
|
97 |
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
|
98 |
|
99 |
+
# Initialize PhiData Agent
|
100 |
+
agent = Agent(
|
101 |
+
name="Science Education Assistant",
|
102 |
+
role="You are a helpful science tutor for 10th-grade students",
|
103 |
+
instructions=[
|
104 |
+
"You are an expert science teacher specializing in 10th-grade curriculum.",
|
105 |
+
"Provide clear, accurate, and age-appropriate explanations.",
|
106 |
+
"Use simple language and examples that students can understand.",
|
107 |
+
"Focus on concepts from physics, chemistry, and biology.",
|
108 |
+
"Structure responses with headings and bullet points when helpful.",
|
109 |
+
"Encourage learning and curiosity."
|
110 |
+
],
|
111 |
+
model=Groq(id="llama3-70b-8192", api_key=api_key),
|
112 |
+
markdown=True
|
113 |
+
)
|
114 |
|
115 |
+
# Set up Jinja2 environment
|
|
|
|
|
|
|
116 |
proj_dir = Path(__file__).parent
|
|
|
|
|
|
|
|
|
117 |
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
118 |
+
template = env.get_template('template.j2') # For document context
|
119 |
+
template_html = env.get_template('template_html.j2') # For HTML output
|
120 |
|
121 |
+
# Response Generation Function
|
122 |
+
def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
|
123 |
+
"""Generate response using semantic search and LLM"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
top_rerank = 25
|
125 |
top_k_rank = 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
if not query.strip():
|
128 |
+
return "Please provide a valid question.", []
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
try:
|
131 |
+
start_time = perf_counter()
|
132 |
+
|
133 |
+
# Encode query and search documents
|
134 |
query_vec = retriever.encode(query)
|
135 |
+
documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list()
|
136 |
+
documents = [doc["text"] for doc in documents]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# Re-rank documents using cross-encoder
|
139 |
+
cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
140 |
+
query_doc_pair = [[query, doc] for doc in documents]
|
141 |
+
cross_scores = cross_encoder_model.predict(query_doc_pair)
|
142 |
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
|
|
143 |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
# Create context from top documents
|
146 |
+
context = "\n\n".join(documents[:10]) if documents else ""
|
147 |
+
context = f"Context information from educational materials:\n{context}\n\n"
|
|
|
148 |
|
149 |
+
# Add conversation history for context
|
150 |
+
history_context = ""
|
151 |
+
if history and len(history) > 0:
|
152 |
+
for user_msg, bot_msg in history[-2:]: # Last 2 exchanges
|
153 |
+
if user_msg and bot_msg:
|
154 |
+
history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
|
155 |
+
|
156 |
+
# Create full prompt
|
157 |
+
full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics."
|
158 |
+
|
159 |
+
# Generate response
|
160 |
+
response = agent.run(full_prompt)
|
161 |
+
response_text = response.content if hasattr(response, 'content') else str(response)
|
162 |
+
|
163 |
+
logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
|
164 |
+
return response_text, documents # Return documents for template
|
165 |
+
|
166 |
+
except Exception as e:
|
167 |
+
logger.error(f"Error in response generation: {e}")
|
168 |
+
return f"Error generating response: {str(e)}", []
|
169 |
|
170 |
+
def simple_chat_function(message, history, cross_encoder_choice):
|
171 |
+
"""Chat function with semantic search and retriever integration"""
|
172 |
+
if not message.strip():
|
173 |
+
return "", history, ""
|
174 |
|
175 |
+
# Generate response and get documents
|
176 |
+
response, documents = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
177 |
|
178 |
+
# Add to history
|
179 |
+
history.append([message, response])
|
180 |
+
|
181 |
+
# Render template with documents and query
|
182 |
+
prompt_html = template_html.render(documents=documents, query=message)
|
183 |
+
|
184 |
+
return "", history, prompt_html
|
185 |
+
|
186 |
+
def translate_text(selected_language, history):
|
187 |
+
"""Translate the last response in history to the selected language."""
|
188 |
iso_language_codes = {
|
189 |
+
"Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
|
190 |
+
"Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
|
191 |
+
"Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
|
192 |
+
"Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
}
|
194 |
|
195 |
to_code = iso_language_codes[selected_language]
|
196 |
+
response_text = history[-1][1] if history and history[-1][1] else ''
|
197 |
+
print('response_text for translation', response_text)
|
198 |
translation = bhashini_translate(response_text, to_code=to_code)
|
199 |
+
return translation.get('translated_content', 'Translation failed.')
|
|
|
200 |
|
201 |
+
# Gradio Interface with layout template
|
202 |
+
with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
|
203 |
+
# Header section
|
204 |
with gr.Row():
|
205 |
with gr.Column(scale=10):
|
206 |
+
gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
|
207 |
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
|
208 |
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
|
|
|
209 |
with gr.Column(scale=3):
|
210 |
+
try:
|
211 |
+
gr.Image(value='logo.png', height=200, width=200)
|
212 |
+
except:
|
213 |
+
gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>")
|
214 |
|
215 |
+
# Chat and input components
|
216 |
chatbot = gr.Chatbot(
|
217 |
[],
|
218 |
elem_id="chatbot",
|
|
|
224 |
)
|
225 |
|
226 |
with gr.Row():
|
227 |
+
msg = gr.Textbox(
|
228 |
scale=3,
|
229 |
show_label=False,
|
230 |
placeholder="Enter text and press enter",
|
231 |
container=False,
|
232 |
)
|
233 |
+
submit_btn = gr.Button(value="Submit text", scale=1, variant="primary")
|
234 |
+
|
235 |
+
# Additional controls
|
236 |
+
cross_encoder = gr.Radio(
|
237 |
+
choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'],
|
238 |
+
value='(ACCURATE) BGE reranker',
|
239 |
+
label="Embeddings Model",
|
240 |
+
info="Select the model for document ranking"
|
241 |
+
)
|
242 |
language_dropdown = gr.Dropdown(
|
243 |
choices=[
|
244 |
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
|
245 |
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
|
246 |
"Gujarati", "Odia"
|
247 |
],
|
248 |
+
value="Hindi",
|
249 |
label="Select Language for Translation"
|
250 |
)
|
251 |
+
translated_textbox = gr.Textbox(label="Translated Response")
|
252 |
+
prompt_html = gr.HTML() # Add HTML component for the template
|
253 |
+
|
254 |
+
# Event handlers
|
255 |
+
def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
|
256 |
+
if not message.strip():
|
257 |
+
return "", history, "", ""
|
258 |
+
|
259 |
+
# Generate response and get documents
|
260 |
+
response, documents = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
261 |
+
history.append([message, response])
|
262 |
+
|
263 |
+
# Translate response
|
264 |
+
translated_text = translate_text(selected_language, history)
|
265 |
+
|
266 |
+
# Render template with documents and query
|
267 |
+
prompt_html_content = template_html.render(documents=documents, query=message)
|
268 |
+
|
269 |
+
return "", history, translated_text, prompt_html_content
|
270 |
+
|
271 |
+
msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox, prompt_html])
|
272 |
+
submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox, prompt_html])
|
273 |
+
|
274 |
+
clear = gr.Button("Clear Conversation")
|
275 |
+
clear.click(lambda: ([], "", "", ""), outputs=[chatbot, msg, translated_textbox, prompt_html])
|
276 |
+
|
277 |
+
# Example questions
|
278 |
+
gr.Examples(
|
279 |
+
examples=[
|
280 |
+
'What is the difference between metals and non-metals?',
|
281 |
+
'What is an ionic bond?',
|
282 |
+
'Explain asexual reproduction',
|
283 |
+
'What is photosynthesis?',
|
284 |
+
'Explain Newton\'s laws of motion'
|
285 |
+
],
|
286 |
+
inputs=msg,
|
287 |
+
label="Try these example questions:"
|
288 |
+
)
|
289 |
+
|
290 |
+
if __name__ == "__main__":
|
291 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr
|
292 |
+
# from phi.agent import Agent
|
293 |
+
# from phi.model.groq import Groq
|
294 |
+
# import os
|
295 |
+
# import logging
|
296 |
+
# from sentence_transformers import CrossEncoder
|
297 |
+
# from backend.semantic_search import table, retriever
|
298 |
+
# import numpy as np
|
299 |
+
# from time import perf_counter
|
300 |
+
# import requests
|
301 |
+
# from jinja2 import Environment, FileSystemLoader
|
302 |
+
|
303 |
+
# # Set up logging
|
304 |
+
# logging.basicConfig(level=logging.INFO)
|
305 |
+
# logger = logging.getLogger(__name__)
|
306 |
+
|
307 |
+
# # API Key setup
|
308 |
+
# api_key = os.getenv("GROQ_API_KEY")
|
309 |
+
# if not api_key:
|
310 |
+
# gr.Warning("GROQ_API_KEY not found. Set it in 'Repository secrets'.")
|
311 |
+
# logger.error("GROQ_API_KEY not found.")
|
312 |
+
# api_key = "" # Fallback to empty string, but this will fail without a key
|
313 |
+
# else:
|
314 |
+
# os.environ["GROQ_API_KEY"] = api_key
|
315 |
+
|
316 |
+
# # Bhashini API setup
|
317 |
+
# bhashini_api_key = os.getenv("API_KEY")
|
318 |
+
# bhashini_user_id = os.getenv("USER_ID")
|
319 |
+
|
320 |
+
# def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
|
321 |
+
# """Translates text from source language to target language using the Bhashini API."""
|
322 |
+
# if not text.strip():
|
323 |
+
# print('Input text is empty. Please provide valid text for translation.')
|
324 |
+
# return {"status_code": 400, "message": "Input text is empty", "translated_content": None}
|
325 |
+
# else:
|
326 |
+
# print('Input text - ', text)
|
327 |
+
# print(f'Starting translation process from {from_code} to {to_code}...')
|
328 |
+
# gr.Warning(f'Translating to {to_code}...')
|
329 |
|
330 |
+
# url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
|
331 |
+
# headers = {
|
332 |
+
# "Content-Type": "application/json",
|
333 |
+
# "userID": bhashini_user_id,
|
334 |
+
# "ulcaApiKey": bhashini_api_key
|
335 |
+
# }
|
336 |
+
# payload = {
|
337 |
+
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
|
338 |
+
# "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
|
339 |
+
# }
|
340 |
|
341 |
+
# print('Sending initial request to get the pipeline...')
|
342 |
+
# response = requests.post(url, json=payload, headers=headers)
|
343 |
+
|
344 |
+
# if response.status_code != 200:
|
345 |
+
# print(f'Error in initial request: {response.status_code}, Response: {response.text}')
|
346 |
+
# return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
|
347 |
+
|
348 |
+
# print('Initial request successful, processing response...')
|
349 |
+
# response_data = response.json()
|
350 |
+
# print('Full response data:', response_data) # Debug the full response
|
351 |
+
# if "pipelineInferenceAPIEndPoint" not in response_data or "callbackUrl" not in response_data["pipelineInferenceAPIEndPoint"]:
|
352 |
+
# print('Unexpected response structure:', response_data)
|
353 |
+
# return {"status_code": 400, "message": "Unexpected API response structure", "translated_content": None}
|
354 |
+
|
355 |
+
# service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
|
356 |
+
# callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
|
357 |
+
|
358 |
+
# print(f'Service ID: {service_id}, Callback URL: {callback_url}')
|
359 |
+
|
360 |
+
# headers2 = {
|
361 |
+
# "Content-Type": "application/json",
|
362 |
+
# response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
|
363 |
+
# }
|
364 |
+
# compute_payload = {
|
365 |
+
# "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
|
366 |
+
# "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
|
367 |
+
# }
|
368 |
+
|
369 |
+
# print(f'Sending translation request with text: "{text}"')
|
370 |
+
# compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
|
371 |
+
|
372 |
+
# if compute_response.status_code != 200:
|
373 |
+
# print(f'Error in translation request: {compute_response.status_code}, Response: {compute_response.text}')
|
374 |
+
# return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
|
375 |
+
|
376 |
+
# print('Translation request successful, processing translation...')
|
377 |
+
# compute_response_data = compute_response.json()
|
378 |
+
# translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
|
379 |
+
|
380 |
+
# print(f'Translation successful. Translated content: "{translated_content}"')
|
381 |
+
# return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
|
382 |
+
|
383 |
+
# # Initialize PhiData Agent
|
384 |
+
# agent = Agent(
|
385 |
+
# name="Science Education Assistant",
|
386 |
+
# role="You are a helpful science tutor for 10th-grade students",
|
387 |
+
# instructions=[
|
388 |
+
# "You are an expert science teacher specializing in 10th-grade curriculum.",
|
389 |
+
# "Provide clear, accurate, and age-appropriate explanations.",
|
390 |
+
# "Use simple language and examples that students can understand.",
|
391 |
+
# "Focus on concepts from physics, chemistry, and biology.",
|
392 |
+
# "Structure responses with headings and bullet points when helpful.",
|
393 |
+
# "Encourage learning and curiosity."
|
394 |
+
# ],
|
395 |
+
# model=Groq(id="llama3-70b-8192", api_key=api_key),
|
396 |
+
# markdown=True
|
397 |
+
# )
|
398 |
+
# # Set up Jinja2 environment
|
399 |
+
# proj_dir = Path(__file__).parent
|
400 |
+
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
401 |
+
|
402 |
+
|
403 |
+
# template_html = env.get_template('template_html.j2')
|
404 |
+
|
405 |
+
# # Response Generation Function
|
406 |
+
# def retrieve_and_generate_response(query, cross_encoder_choice, history=None):
|
407 |
+
# """Generate response using semantic search and LLM"""
|
408 |
+
# top_rerank = 25
|
409 |
+
# top_k_rank = 20
|
410 |
+
|
411 |
+
# if not query.strip():
|
412 |
+
# return "Please provide a valid question."
|
413 |
+
|
414 |
+
# try:
|
415 |
+
# start_time = perf_counter()
|
416 |
|
417 |
+
# # Encode query and search documents
|
418 |
+
# query_vec = retriever.encode(query)
|
419 |
+
# documents = table.search(query_vec, vector_column_name="vector").limit(top_rerank).to_list()
|
420 |
+
# documents = [doc["text"] for doc in documents]
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
+
# # Re-rank documents using cross-encoder
|
423 |
+
# cross_encoder_model = CrossEncoder('BAAI/bge-reranker-base') if cross_encoder_choice == '(ACCURATE) BGE reranker' else CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
424 |
+
# query_doc_pair = [[query, doc] for doc in documents]
|
425 |
+
# cross_scores = cross_encoder_model.predict(query_doc_pair)
|
426 |
+
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
427 |
+
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
428 |
+
|
429 |
+
# # Create context from top documents
|
430 |
+
# context = "\n\n".join(documents[:10]) if documents else ""
|
431 |
+
# context = f"Context information from educational materials:\n{context}\n\n"
|
432 |
+
|
433 |
+
# # Add conversation history for context
|
434 |
+
# history_context = ""
|
435 |
+
# if history and len(history) > 0:
|
436 |
+
# for user_msg, bot_msg in history[-2:]: # Last 2 exchanges
|
437 |
+
# if user_msg and bot_msg:
|
438 |
+
# history_context += f"Previous Q: {user_msg}\nPrevious A: {bot_msg}\n"
|
439 |
+
|
440 |
+
# # Create full prompt
|
441 |
+
# full_prompt = f"{history_context}{context}Question: {query}\n\nPlease answer the question using the context provided above. If the context doesn't contain relevant information, use your general knowledge about 10th-grade science topics."
|
442 |
+
|
443 |
+
# # Generate response
|
444 |
+
# response = agent.run(full_prompt)
|
445 |
+
# response_text = response.content if hasattr(response, 'content') else str(response)
|
446 |
+
|
447 |
+
# logger.info(f"Response generation took {perf_counter() - start_time:.2f} seconds")
|
448 |
+
# return response_text
|
449 |
+
|
450 |
+
# except Exception as e:
|
451 |
+
# logger.error(f"Error in response generation: {e}")
|
452 |
+
# return f"Error generating response: {str(e)}"
|
453 |
|
454 |
+
# def simple_chat_function(message, history, cross_encoder_choice):
|
455 |
+
# """Chat function with semantic search and retriever integration"""
|
456 |
+
# if not message.strip():
|
457 |
+
# return "", history
|
458 |
+
|
459 |
+
# # Generate response using the semantic search function
|
460 |
+
# response = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
461 |
+
|
462 |
+
# # Add to history
|
463 |
+
# history.append([message, response])
|
464 |
+
|
465 |
+
# return "", history
|
466 |
+
|
467 |
+
# def translate_text(selected_language, history):
|
468 |
+
# """Translate the last response in history to the selected language."""
|
469 |
+
# iso_language_codes = {
|
470 |
+
# "Hindi": "hi", "Gom": "gom", "Kannada": "kn", "Dogri": "doi", "Bodo": "brx", "Urdu": "ur",
|
471 |
+
# "Tamil": "ta", "Kashmiri": "ks", "Assamese": "as", "Bengali": "bn", "Marathi": "mr",
|
472 |
+
# "Sindhi": "sd", "Maithili": "mai", "Punjabi": "pa", "Malayalam": "ml", "Manipuri": "mni",
|
473 |
+
# "Telugu": "te", "Sanskrit": "sa", "Nepali": "ne", "Santali": "sat", "Gujarati": "gu", "Odia": "or"
|
474 |
+
# }
|
475 |
+
|
476 |
+
# to_code = iso_language_codes[selected_language]
|
477 |
+
# response_text = history[-1][1] if history and history[-1][1] else ''
|
478 |
+
# print('response_text for translation', response_text)
|
479 |
+
# translation = bhashini_translate(response_text, to_code=to_code)
|
480 |
+
# return translation.get('translated_content', 'Translation failed.')
|
481 |
+
|
482 |
+
# # Gradio Interface with layout template
|
483 |
+
# with gr.Blocks(title="Science Chatbot", theme='gradio/soft') as demo:
|
484 |
+
# # Header section
|
485 |
+
# with gr.Row():
|
486 |
+
# with gr.Column(scale=10):
|
487 |
+
# gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 10TH SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
|
488 |
+
# gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
|
489 |
+
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
|
490 |
+
# with gr.Column(scale=3):
|
491 |
+
# try:
|
492 |
+
# gr.Image(value='logo.png', height=200, width=200)
|
493 |
+
# except:
|
494 |
+
# gr.HTML("<div style='height: 200px; width: 200px; background-color: #f0f0f0; display: flex; align-items: center; justify-content: center;'>Logo</div>")
|
495 |
|
496 |
+
# # Chat and input components
|
497 |
+
# chatbot = gr.Chatbot(
|
498 |
+
# [],
|
499 |
+
# elem_id="chatbot",
|
500 |
+
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
|
501 |
+
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
|
502 |
+
# bubble_full_width=False,
|
503 |
+
# show_copy_button=True,
|
504 |
+
# show_share_button=True,
|
505 |
+
# )
|
506 |
+
|
507 |
+
# with gr.Row():
|
508 |
+
# msg = gr.Textbox(
|
509 |
+
# scale=3,
|
510 |
+
# show_label=False,
|
511 |
+
# placeholder="Enter text and press enter",
|
512 |
+
# container=False,
|
513 |
+
# )
|
514 |
+
# submit_btn = gr.Button(value="Submit text", scale=1, variant="primary")
|
515 |
+
|
516 |
+
# # Additional controls
|
517 |
+
# cross_encoder = gr.Radio(
|
518 |
+
# choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker'],
|
519 |
+
# value='(ACCURATE) BGE reranker',
|
520 |
+
# label="Embeddings Model",
|
521 |
+
# info="Select the model for document ranking"
|
522 |
+
# )
|
523 |
+
# language_dropdown = gr.Dropdown(
|
524 |
+
# choices=[
|
525 |
+
# "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
|
526 |
+
# "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
|
527 |
+
# "Gujarati", "Odia"
|
528 |
+
# ],
|
529 |
+
# value="Hindi",
|
530 |
+
# label="Select Language for Translation"
|
531 |
+
# )
|
532 |
+
# translated_textbox = gr.Textbox(label="Translated Response")
|
533 |
+
|
534 |
+
# # Event handlers
|
535 |
+
# def update_chat_and_translate(message, history, cross_encoder_choice, selected_language):
|
536 |
+
# if not message.strip():
|
537 |
+
# return "", history, ""
|
538 |
+
|
539 |
+
# # Generate response
|
540 |
+
# response = retrieve_and_generate_response(message, cross_encoder_choice, history)
|
541 |
+
# history.append([message, response])
|
542 |
+
|
543 |
+
# # Translate response
|
544 |
+
# translated_text = translate_text(selected_language, history)
|
545 |
+
|
546 |
+
# return "", history, translated_text
|
547 |
|
548 |
+
# msg.submit(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
|
549 |
+
# submit_btn.click(update_chat_and_translate, [msg, chatbot, cross_encoder, language_dropdown], [msg, chatbot, translated_textbox])
|
550 |
|
551 |
+
# clear = gr.Button("Clear Conversation")
|
552 |
+
# clear.click(lambda: ([], "", ""), outputs=[chatbot, msg, translated_textbox])
|
553 |
|
554 |
+
# # Example questions
|
555 |
+
# gr.Examples(
|
556 |
+
# examples=[
|
557 |
+
# 'What is the difference between metals and non-metals?',
|
558 |
+
# 'What is an ionic bond?',
|
559 |
+
# 'Explain asexual reproduction',
|
560 |
+
# 'What is photosynthesis?',
|
561 |
+
# 'Explain Newton\'s laws of motion'
|
562 |
+
# ],
|
563 |
+
# inputs=msg,
|
564 |
+
# label="Try these example questions:"
|
565 |
+
# )
|
566 |
|
567 |
+
# if __name__ == "__main__":
|
568 |
+
# demo.launch(server_name="0.0.0.0", server_port=7860)# import gradio as gr
|