import os import re from typing import List, Union, Iterator from http import HTTPStatus from time import time import time import json from qwen_agent.agents import Assistant from qwen_agent.agents import assistant from qwen_agent.agents.assistant import Assistant, get_basename_from_url from qwen_agent.memory.memory import Memory from qwen_agent.llm.schema import ASSISTANT, USER, Message, SYSTEM, CONTENT from qwen_agent.llm.qwen_dashscope import QwenChatAtDS import qwen_agent.llm.base from qwen_agent.llm.base import ModelServiceError from qwen_agent.utils.utils import extract_text_from_message, print_traceback from qwen_agent.utils.tokenization_qwen import count_tokens, tokenizer from qwen_agent.utils.utils import (get_file_type, hash_sha256, is_http_url, sanitize_chrome_file_path, save_url_to_local_work_dir) from qwen_agent.log import logger from qwen_agent.gui.gradio import gr from qwen_agent.tools.storage import KeyNotExistsError from qwen_agent.tools.simple_doc_parser import (SimpleDocParser, PARSER_SUPPORTED_FILE_TYPES, parse_pdf, parse_word, parse_ppt, parse_txt, parse_html_bs, parse_csv, parse_tsv, parse_excel, get_plain_doc) def memory_run(self, messages: List[Message], lang: str = 'en', **kwargs) -> Iterator[List[Message]]: """This agent is responsible for processing the input files in the message. This method stores the files in the knowledge base, and retrievals the relevant parts based on the query and returning them. The currently supported file types include: .pdf, .docx, .pptx, .txt, .csv, .tsv, .xlsx, .xls and html. Args: messages: A list of messages. lang: Language. Yields: The message of retrieved documents. """ # process files in messages rag_files = self.get_rag_files(messages) if not rag_files: yield [Message(role=ASSISTANT, content='', name='memory')] else: query = '' # Only retrieval content according to the last user query if exists if messages and messages[-1].role == USER: query = extract_text_from_message(messages[-1], add_upload_info=False) content = self.function_map['retrieval'].call( { 'query': query, 'files': rag_files }, **kwargs, ) if not isinstance(content, str): content = json.dumps(content, ensure_ascii=False, indent=4) yield [Message(role=ASSISTANT, content=content, name='memory')] Memory._run = memory_run common_programming_language_extensions = [ "py", # Python "java", # Java "cpp", # C++ "c", # C "h", # C/C++ 头文件 "cs", # C# "js", # JavaScript "ts", # TypeScript "rb", # Ruby "php", # PHP "swift", # Swift "go", # Go "rs", # Rust "kt", # Kotlin "scala", # Scala "m", # Objective-C "css", # CSS "sql", # SQL "sh", # Shell "pl", # Perl "r", # R "jl", # Julia "dart", # Dart "json", # JSON "xml", # XML "yml", # YAML "toml", # TOML ] def SimpleDocParser_call(self, params: Union[str, dict], **kwargs) -> Union[str, list]: params = self._verify_json_format_args(params) path = params['url'] cached_name_ori = f'{hash_sha256(path)}_ori' try: # Directly load the parsed doc parsed_file = self.db.get(cached_name_ori) # [PATCH]: disable json5 for faster processing # try: # parsed_file = json5.loads(parsed_file) # except ValueError: # logger.warning(f'Encountered ValueError raised by json5. Fall back to json. File: {cached_name_ori}') parsed_file = json.loads(parsed_file) logger.info(f'Read parsed {path} from cache.') except KeyNotExistsError: logger.info(f'Start parsing {path}...') time1 = time.time() f_type = get_file_type(path) if f_type in PARSER_SUPPORTED_FILE_TYPES + common_programming_language_extensions: if path.startswith('https://') or path.startswith('http://') or re.match( r'^[A-Za-z]:\\', path) or re.match(r'^[A-Za-z]:/', path): path = path else: path = sanitize_chrome_file_path(path) os.makedirs(self.data_root, exist_ok=True) if is_http_url(path): # download online url tmp_file_root = os.path.join(self.data_root, hash_sha256(path)) os.makedirs(tmp_file_root, exist_ok=True) path = save_url_to_local_work_dir(path, tmp_file_root) if f_type == 'pdf': parsed_file = parse_pdf(path, self.extract_image) elif f_type == 'docx': parsed_file = parse_word(path, self.extract_image) elif f_type == 'pptx': parsed_file = parse_ppt(path, self.extract_image) elif f_type == 'txt' or f_type in common_programming_language_extensions: parsed_file = parse_txt(path) elif f_type == 'html': parsed_file = parse_html_bs(path, self.extract_image) elif f_type == 'csv': parsed_file = parse_csv(path, self.extract_image) elif f_type == 'tsv': parsed_file = parse_tsv(path, self.extract_image) elif f_type in ['xlsx', 'xls']: parsed_file = parse_excel(path, self.extract_image) else: raise ValueError( f'Failed: The current parser does not support this file type! Supported types: {"/".join(PARSER_SUPPORTED_FILE_TYPES + common_programming_language_extensions)}' ) for page in parsed_file: for para in page['content']: # Todo: More attribute types para['token'] = count_tokens(para.get('text', para.get('table'))) time2 = time.time() logger.info(f'Finished parsing {path}. Time spent: {time2 - time1} seconds.') # Cache the parsing doc self.db.put(cached_name_ori, json.dumps(parsed_file, ensure_ascii=False, indent=2)) if not self.structured_doc: return get_plain_doc(parsed_file) else: return parsed_file SimpleDocParser.call = SimpleDocParser_call def _truncate_input_messages_roughly(messages: List[Message], max_tokens: int) -> List[Message]: sys_msg = messages[0] assert sys_msg.role == SYSTEM # The default system is prepended if none exists if len([m for m in messages if m.role == SYSTEM]) >= 2: raise gr.Error( 'The input messages must contain no more than one system message. ' ' And the system message, if exists, must be the first message.', ) turns = [] for m in messages[1:]: if m.role == USER: turns.append([m]) else: if turns: turns[-1].append(m) else: raise gr.Error( 'The input messages (excluding the system message) must start with a user message.', ) def _count_tokens(msg: Message) -> int: return tokenizer.count_tokens(extract_text_from_message(msg, add_upload_info=True)) token_cnt = _count_tokens(sys_msg) truncated = [] for i, turn in enumerate(reversed(turns)): cur_turn_msgs = [] cur_token_cnt = 0 for m in reversed(turn): cur_turn_msgs.append(m) cur_token_cnt += _count_tokens(m) # Check "i == 0" so that at least one user message is included # [PATCH] Do not do truncate for this demo # if (i == 0) or (token_cnt + cur_token_cnt <= max_tokens): truncated.extend(cur_turn_msgs) token_cnt += cur_token_cnt # else: # break # Always include the system message truncated.append(sys_msg) truncated.reverse() if len(truncated) < 2: # one system message + one or more user messages raise gr.Error( code='400', message='At least one user message should be provided.', ) if token_cnt > max_tokens: raise gr.Error( f'The input messages (around {token_cnt} tokens) exceed the maximum context length ({max_tokens} tokens).' ) return truncated qwen_agent.llm.base._truncate_input_messages_roughly = _truncate_input_messages_roughly def format_knowledge_to_source_and_content(result: Union[str, List[dict]]) -> List[dict]: knowledge = [] if isinstance(result, str): result = f'{result}'.strip() try: # [PATCH]: disable json5 for faster processing docs = json.loads(result) except Exception: print_traceback() knowledge.append({'source': '上传的文档', 'content': result}) return knowledge else: docs = result try: _tmp_knowledge = [] assert isinstance(docs, list) for doc in docs: url, snippets = doc['url'], doc['text'] assert isinstance(snippets, list) _tmp_knowledge.append({ 'source': f'[文件]({get_basename_from_url(url)})', 'content': '\n\n...\n\n'.join(snippets) }) knowledge.extend(_tmp_knowledge) except Exception: print_traceback() knowledge.append({'source': '上传的文档', 'content': result}) return knowledge assistant.format_knowledge_to_source_and_content = format_knowledge_to_source_and_content HINT_PATTERN = "\ninput tokens: {input_tokens}, prefill time: [[]]s, output tokens: {output_tokens}, decode speed: [[]] tokens/s" @staticmethod def _full_stream_output(response): for chunk in response: if chunk.status_code == HTTPStatus.OK: # [PATCH]: add speed statistics yield [Message(ASSISTANT, chunk.output.choices[0].message.content + HINT_PATTERN.format( input_tokens=chunk.usage.input_tokens, output_tokens=chunk.usage.output_tokens,) )] else: raise ModelServiceError(code=chunk.code, message=chunk.message) QwenChatAtDS._full_stream_output = _full_stream_output def assistant_run(self, messages, lang="en", knowledge="", **kwargs): if any([len(message[CONTENT]) > 1 for message in messages]): yield [Message(ASSISTANT, "Uploading and Parsing Files...")] new_messages = self._prepend_knowledge_prompt(messages=messages, lang=lang, knowledge=knowledge, **kwargs) start_prefill_time = time.time() yield [Message(ASSISTANT, "Qwen-Turbo is thinking...")] start_decode_time = None for chunk in super(Assistant, self)._run(messages=new_messages, lang=lang, **kwargs): if start_decode_time is None: end_prefill_time = time.time() start_decode_time = time.time() - 0.5 # [PATCH]: compute speed statstics pattern = re.search(HINT_PATTERN.format(input_tokens="\d+", output_tokens="(\d+)").replace("[", "\[").replace("]", "\]"), chunk[0][CONTENT]) if pattern: output_tokens = int(pattern.group(1)) chunk[0][CONTENT] = chunk[0][CONTENT].replace("[[]]", "%.2f" % (end_prefill_time - start_prefill_time)).replace("[[]]", "%.2f" % (output_tokens/(time.time() - start_decode_time))) yield chunk Assistant._run = assistant_run