import gradio as gr import torch from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel import soundfile as sf # Load the model and processor model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de") processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de") # Define the transcription function def transcribe_speech(file_info): # Read the audio file speech, _ = sf.read(file_info) # Process the speech inputs = processor(speech, sampling_rate=16_000, return_tensors="pt") # Generate the transcription generated_ids = model.generate(inputs=inputs["input_values"], attention_mask=inputs["attention_mask"]) # Decode the generated ids to text transcription = processor.batch_decode(generated_ids) return transcription[0] # Create the Gradio interface iface = gr.Interface( fn=transcribe_speech, inputs=gr.Audio(source="upload", type="filepath", label="Upload your MP3 file"), outputs="text", title="Speech to Text Conversion", description="Upload an MP3 file to transcribe it to text using a state-of-the-art speech-to-text model." ) # Run the Gradio app iface.launch()