Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import Speech2Text2Processor, SpeechEncoderDecoderModel
|
4 |
+
import soundfile as sf
|
5 |
+
|
6 |
+
# Load the model and processor
|
7 |
+
model = SpeechEncoderDecoderModel.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
|
8 |
+
processor = Speech2Text2Processor.from_pretrained("facebook/s2t-wav2vec2-large-en-de")
|
9 |
+
|
10 |
+
# Define the transcription function
|
11 |
+
def transcribe_speech(file_info):
|
12 |
+
# Read the audio file
|
13 |
+
speech, _ = sf.read(file_info)
|
14 |
+
# Process the speech
|
15 |
+
inputs = processor(speech, sampling_rate=16_000, return_tensors="pt")
|
16 |
+
# Generate the transcription
|
17 |
+
generated_ids = model.generate(inputs=inputs["input_values"], attention_mask=inputs["attention_mask"])
|
18 |
+
# Decode the generated ids to text
|
19 |
+
transcription = processor.batch_decode(generated_ids)
|
20 |
+
|
21 |
+
return transcription[0]
|
22 |
+
|
23 |
+
# Create the Gradio interface
|
24 |
+
iface = gr.Interface(
|
25 |
+
fn=transcribe_speech,
|
26 |
+
inputs=gr.inputs.Audio(source="upload", type="filepath", label="Upload your MP3 file"),
|
27 |
+
outputs="text",
|
28 |
+
title="Speech to Text Conversion",
|
29 |
+
description="Upload an MP3 file to transcribe it to text using a state-of-the-art speech-to-text model."
|
30 |
+
)
|
31 |
+
|
32 |
+
# Run the Gradio app
|
33 |
+
iface.launch()
|