import streamlit as st from PIL import Image import pandas as pd import numpy as np import pickle import datetime import os import sys # from utils import payday, date_extracts sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) from utils import payday, date_extracts st.set_page_config( page_title="Ex-stream-ly Cool App", page_icon="🧊", initial_sidebar_state="expanded", menu_items={ 'Get Help': 'https://www.extremelycoolapp.com/help', 'Report a bug': "https://www.extremelycoolapp.com/bug", 'About': "# This is a header. This is an *extremely* cool app!" } ) # Define directory paths DIRPATH = os.path.dirname(os.path.realpath(__file__)) ml_components_1 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_1.pkl") ml_components_2 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_2.pkl") image_path = os.path.join(DIRPATH, "..", "src", "assets", "images", "sales.png") # create a functions to load pickle file. def load_pickle(filename): with open(filename, 'rb') as file: data = pickle.load(file) return data #load all pickle files ml_compos_1 = load_pickle(ml_components_1) ml_compos_2 = load_pickle(ml_components_2) # components in ml_compos_2 categorical_pipeline = ml_compos_2['categorical_pipeline'] numerical_pipeliine = ml_compos_2['numerical_pipeline'] model = ml_compos_2['model'] num_cols = ml_compos_1['num_cols'] cat_cols = ml_compos_1['cat_cols'] # the title for the app st.title('✨SALES FORECASTING APP✨') # adding image image=Image.open(image_path) st.image(image, width=600) st.subheader("Hi there! 👋 Let's start predicting sales 🙂") # create an expander to contain the app my_expander = st.container() holiday_level = 'No Holiday' hol_city = 'No Holiday' st.sidebar.selectbox('Menu', ['About', 'Model']) with my_expander: # create a three column layout col1, col2, col3 = st.columns(3) # create a date input to receive date date = col1.date_input( "Enter the Date", datetime.date(2019, 7, 6)) # create a select box to select a family item_family = col2.selectbox('What is the category of item?', ml_compos_1['family']) # create a select box for store city store_city = col3.selectbox("Which city is the store located?", ml_compos_1['Store_city']) store_state = col1.selectbox("What state is the store located?", ml_compos_1['Store_state']) # hol_city = col2.selectbox("In which city is the holiday?", # ml_compos_1['Holiday_city']) crude_price = col3.number_input('Price of Crude Oil', min_value=0.0, max_value=500.0, value=0.01) day_type = col2.selectbox("Type of Day?", ml_compos_1['Type_of_day'], index=2) # holiday_level = col3.radio("level of Holiday?", # ml_compos_1['Holiday_level']) colZ, colY = st.columns(2) store_type = colZ.radio("Type of store?", ml_compos_1['Store_type'][::-1]) st.write('', unsafe_allow_html=True) holi = colY.empty() with holi.expander(label='Holiday', expanded=True): if day_type == 'Additional Holiday' or day_type == 'Holiday' or day_type=='Transferred holiday': holiday_level = st.radio("level of Holiday?", ml_compos_1['Holiday_level'])#.tolist().remove('Not Holiday')) hol_city = st.selectbox("In which city is the holiday?", ml_compos_1['Holiday_city'])#.tolist().remove('Not Holiday')) else: st.markdown('Not Holiday') holiday_level = 'Not Holiday' hol_city = 'Not Holiday' colA, colB, colC = st.columns(3) store_number = colA.slider("Select the Store number ", min_value=1, max_value=54, value=1) store_cluster = colB.slider("Select the Store Cluster ", min_value=1, max_value=17, value=1) item_onpromo = colC.slider("Number of items onpromo ", min_value=0, max_value=800, value=1) button = st.button(label='Predict', use_container_width=True, type='primary') X = np.array([[date, store_number, item_family, item_onpromo, crude_price, holiday_level, hol_city, day_type, store_city, store_state, store_type, store_cluster]]) df = pd.DataFrame(X, columns=['date', 'Store_number', 'Family', 'Item_onpromo', 'Oil_prices', 'Holiday_level', 'Holiday_city', 'TypeOfDay', 'Store_city', 'Store_state', 'Store_type', 'Cluster']) df_raw = df.copy() df[['Store_number', 'Item_onpromo', 'Cluster']] = df[['Store_number', 'Item_onpromo', 'Cluster']].apply(lambda x: x.astype(int)) df['date'] = pd.to_datetime(df['date']) df = df.set_index('date') date_extracts(df) df['Is_payday']= df[['DayOfMonth', 'Is_month_end']].apply(payday, axis=1) if button: st.balloons() df[cat_cols] = categorical_pipeline.transform(df[cat_cols]) df[num_cols] = numerical_pipeliine.transform(df[num_cols]) # predicted_sale = model.predict(df) st.metric('Predicted Sale', value=model.predict(df)) st.write(df_raw) st.download_button('Download Data', df.to_csv(index=False), file_name='data.csv') print(df.shape)