Spaces:
Build error
Build error
import streamlit as st | |
from PIL import Image | |
import pandas as pd | |
import numpy as np | |
import pickle | |
import datetime | |
import os | |
import sys | |
# from utils import payday, date_extracts | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) | |
from utils import payday, date_extracts | |
st.set_page_config( | |
page_title="Ex-stream-ly Cool App", | |
page_icon="🧊", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://www.extremelycoolapp.com/help', | |
'Report a bug': "https://www.extremelycoolapp.com/bug", | |
'About': "# This is a header. This is an *extremely* cool app!" | |
} | |
) | |
# Define directory paths | |
DIRPATH = os.path.dirname(os.path.realpath(__file__)) | |
ml_components_1 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_1.pkl") | |
ml_components_2 = os.path.join(DIRPATH, "..", "src", "assets", "ml_components", "ml_components_2.pkl") | |
image_path = os.path.join(DIRPATH, "..", "src", "assets", "images", "sales.png") | |
# create a functions to load pickle file. | |
def load_pickle(filename): | |
with open(filename, 'rb') as file: | |
data = pickle.load(file) | |
return data | |
#load all pickle files | |
ml_compos_1 = load_pickle(ml_components_1) | |
ml_compos_2 = load_pickle(ml_components_2) | |
# components in ml_compos_2 | |
categorical_pipeline = ml_compos_2['categorical_pipeline'] | |
numerical_pipeliine = ml_compos_2['numerical_pipeline'] | |
model = ml_compos_2['model'] | |
num_cols = ml_compos_1['num_cols'] | |
cat_cols = ml_compos_1['cat_cols'] | |
# the title for the app | |
st.title('✨SALES FORECASTING APP✨') | |
# adding image | |
image=Image.open(image_path) | |
st.image(image, width=600) | |
st.subheader("Hi there! 👋 Let's start predicting sales 🙂") | |
# create an expander to contain the app | |
my_expander = st.container() | |
holiday_level = 'No Holiday' | |
hol_city = 'No Holiday' | |
st.sidebar.selectbox('Menu', ['About', 'Model']) | |
with my_expander: | |
# create a three column layout | |
col1, col2, col3 = st.columns(3) | |
# create a date input to receive date | |
date = col1.date_input( | |
"Enter the Date", | |
datetime.date(2019, 7, 6)) | |
# create a select box to select a family | |
item_family = col2.selectbox('What is the category of item?', | |
ml_compos_1['family']) | |
# create a select box for store city | |
store_city = col3.selectbox("Which city is the store located?", | |
ml_compos_1['Store_city']) | |
store_state = col1.selectbox("What state is the store located?", | |
ml_compos_1['Store_state']) | |
# hol_city = col2.selectbox("In which city is the holiday?", | |
# ml_compos_1['Holiday_city']) | |
crude_price = col3.number_input('Price of Crude Oil', min_value=0.0, max_value=500.0, value=0.01) | |
day_type = col2.selectbox("Type of Day?", | |
ml_compos_1['Type_of_day'], index=2) | |
# holiday_level = col3.radio("level of Holiday?", | |
# ml_compos_1['Holiday_level']) | |
colZ, colY = st.columns(2) | |
store_type = colZ.radio("Type of store?", | |
ml_compos_1['Store_type'][::-1]) | |
st.write('<style>div.row-widget.stRadio > div{flex-direction:row;}</style>', unsafe_allow_html=True) | |
holi = colY.empty() | |
with holi.expander(label='Holiday', expanded=True): | |
if day_type == 'Additional Holiday' or day_type == 'Holiday' or day_type=='Transferred holiday': | |
holiday_level = st.radio("level of Holiday?", | |
ml_compos_1['Holiday_level'])#.tolist().remove('Not Holiday')) | |
hol_city = st.selectbox("In which city is the holiday?", | |
ml_compos_1['Holiday_city'])#.tolist().remove('Not Holiday')) | |
else: | |
st.markdown('Not Holiday') | |
holiday_level = 'Not Holiday' | |
hol_city = 'Not Holiday' | |
colA, colB, colC = st.columns(3) | |
store_number = colA.slider("Select the Store number ", | |
min_value=1, | |
max_value=54, | |
value=1) | |
store_cluster = colB.slider("Select the Store Cluster ", | |
min_value=1, | |
max_value=17, | |
value=1) | |
item_onpromo = colC.slider("Number of items onpromo ", | |
min_value=0, | |
max_value=800, | |
value=1) | |
button = st.button(label='Predict', use_container_width=True, type='primary') | |
X = np.array([[date, store_number, item_family, item_onpromo, crude_price, holiday_level, hol_city, day_type, | |
store_city, store_state, store_type, store_cluster]]) | |
df = pd.DataFrame(X, columns=['date', 'Store_number', 'Family', 'Item_onpromo', 'Oil_prices', 'Holiday_level', 'Holiday_city', | |
'TypeOfDay', 'Store_city', 'Store_state', 'Store_type', 'Cluster']) | |
df_raw = df.copy() | |
df[['Store_number', 'Item_onpromo', 'Cluster']] = df[['Store_number', 'Item_onpromo', 'Cluster']].apply(lambda x: x.astype(int)) | |
df['date'] = pd.to_datetime(df['date']) | |
df = df.set_index('date') | |
date_extracts(df) | |
df['Is_payday']= df[['DayOfMonth', 'Is_month_end']].apply(payday, axis=1) | |
if button: | |
st.balloons() | |
df[cat_cols] = categorical_pipeline.transform(df[cat_cols]) | |
df[num_cols] = numerical_pipeliine.transform(df[num_cols]) | |
# predicted_sale = model.predict(df) | |
st.metric('Predicted Sale', value=model.predict(df)) | |
st.write(df_raw) | |
st.download_button('Download Data', | |
df.to_csv(index=False), | |
file_name='data.csv') | |
print(df.shape) | |