import gradio as gr import ctransformers class Z(object): def __init__(self): self.llm = None def init(self): pass def run0(self, txt0, paramTemp): prompt0 = txt0 # for Wizard-Vicuna-13B prompt00 = f'''USER: {prompt0} ASSISTANT:''' # for TheBloke/Wizard-Vicuna-13B-Uncensored-GGML prompt00 = f'''Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt0} ### Response:''' # raw prompt00 = prompt0 response0 = llm(prompt00, max_new_tokens=198, temperature=paramTemp) # 0.5, 0.3 return f'{response0}' from ctransformers import AutoModelForCausalLM # experiment #llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-12b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2') # experiment #llm = AutoModelForCausalLM.from_pretrained('mverrilli/dolly-v2-7b-ggml', model_file='ggml-model-q5_0.bin', model_type='dolly-v2') # wizzard vicuna # see https://github.com/melodysdreamj/WizardVicunaLM #llm = AutoModelForCausalLM.from_pretrained('TheBloke/Wizard-Vicuna-13B-Uncensored-GGML', model_file='Wizard-Vicuna-13B-Uncensored.ggmlv3.q4_0.bin', model_type='llama') modelInfo = {'path2':'TheBloke/hippogriff-30b-chat-GGML:hippogriff-30b.ggmlv3.q4_1.bin', 'promptType':'raw', 'modelType':'llama'} print('[D] load LMt...') llm = AutoModelForCausalLM.from_pretrained(modelInfo['path2'].split(':')[0], model_file=modelInfo['path2'].split(':')[1], model_type=modelInfo['modelType']) print('[D] ...done') z = Z() z.llm = llm z.init() def run0(prompt, temperature): global z return z.run0(prompt, temperature) iface = gr.Interface(fn=run0, inputs=["text", gr.Slider(0.0, 1.0, value=0.41)], outputs="text") iface.launch()