# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn from einops import rearrange from diffusers.utils import logging from diffusers.models.attention_processor import Attention from .modeling_resnet import ( Downsample2D, ResnetBlock2D, CausalResnetBlock3D, Upsample2D, TemporalDownsample2x, TemporalUpsample2x, CausalDownsample2x, CausalTemporalDownsample2x, CausalUpsample2x, CausalTemporalUpsample2x, ) logger = logging.get_logger(__name__) # pylint: disable=invalid-name def get_input_layer( in_channels: int, out_channels: int, norm_num_groups: int, layer_type: str, norm_type: str = 'group', affine: bool = True, ): if layer_type == 'conv': input_layer = nn.Conv3d( in_channels, out_channels, kernel_size=3, stride=1, padding=1, ) elif layer_type == 'pixel_shuffle': input_layer = nn.Sequential( nn.PixelUnshuffle(2), nn.Conv2d(in_channels * 4, out_channels, kernel_size=1), ) else: raise NotImplementedError(f"Not support input layer {layer_type}") return input_layer def get_output_layer( in_channels: int, out_channels: int, norm_num_groups: int, layer_type: str, norm_type: str = 'group', affine: bool = True, ): if layer_type == 'norm_act_conv': output_layer = nn.Sequential( nn.GroupNorm(num_channels=in_channels, num_groups=norm_num_groups, eps=1e-6, affine=affine), nn.SiLU(), nn.Conv3d(in_channels, out_channels, 3, stride=1, padding=1), ) elif layer_type == 'pixel_shuffle': output_layer = nn.Sequential( nn.Conv2d(in_channels, out_channels * 4, kernel_size=1), nn.PixelShuffle(2), ) else: raise NotImplementedError(f"Not support output layer {layer_type}") return output_layer def get_down_block( down_block_type: str, num_layers: int, in_channels: int, out_channels: int = None, temb_channels: int = None, add_spatial_downsample: bool = None, add_temporal_downsample: bool = None, resnet_eps: float = 1e-6, resnet_act_fn: str = 'silu', resnet_groups: Optional[int] = None, downsample_padding: Optional[int] = None, resnet_time_scale_shift: str = "default", attention_head_dim: Optional[int] = None, dropout: float = 0.0, norm_affline: bool = True, norm_layer: str = 'layer', ): if down_block_type == "DownEncoderBlock2D": return DownEncoderBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, dropout=dropout, add_spatial_downsample=add_spatial_downsample, add_temporal_downsample=add_temporal_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, ) elif down_block_type == "DownEncoderBlockCausal3D": return DownEncoderBlockCausal3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, dropout=dropout, add_spatial_downsample=add_spatial_downsample, add_temporal_downsample=add_temporal_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, ) raise ValueError(f"{down_block_type} does not exist.") def get_up_block( up_block_type: str, num_layers: int, in_channels: int, out_channels: int, prev_output_channel: int = None, temb_channels: int = None, add_spatial_upsample: bool = None, add_temporal_upsample: bool = None, resnet_eps: float = 1e-6, resnet_act_fn: str = 'silu', resolution_idx: Optional[int] = None, resnet_groups: Optional[int] = None, resnet_time_scale_shift: str = "default", attention_head_dim: Optional[int] = None, dropout: float = 0.0, interpolate: bool = True, norm_affline: bool = True, norm_layer: str = 'layer', ) -> nn.Module: if up_block_type == "UpDecoderBlock2D": return UpDecoderBlock2D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, resolution_idx=resolution_idx, dropout=dropout, add_spatial_upsample=add_spatial_upsample, add_temporal_upsample=add_temporal_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, temb_channels=temb_channels, interpolate=interpolate, ) elif up_block_type == "UpDecoderBlockCausal3D": return UpDecoderBlockCausal3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, resolution_idx=resolution_idx, dropout=dropout, add_spatial_upsample=add_spatial_upsample, add_temporal_upsample=add_temporal_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, temb_channels=temb_channels, interpolate=interpolate, ) raise ValueError(f"{up_block_type} does not exist.") class UNetMidBlock2D(nn.Module): """ A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. Args: in_channels (`int`): The number of input channels. temb_channels (`int`): The number of temporal embedding channels. dropout (`float`, *optional*, defaults to 0.0): The dropout rate. num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. resnet_time_scale_shift (`str`, *optional*, defaults to `default`): The type of normalization to apply to the time embeddings. This can help to improve the performance of the model on tasks with long-range temporal dependencies. resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. resnet_groups (`int`, *optional*, defaults to 32): The number of groups to use in the group normalization layers of the resnet blocks. attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. resnet_pre_norm (`bool`, *optional*, defaults to `True`): Whether to use pre-normalization for the resnet blocks. add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. attention_head_dim (`int`, *optional*, defaults to 1): Dimension of a single attention head. The number of attention heads is determined based on this value and the number of input channels. output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. Returns: `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, in_channels, height, width)`. """ def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", # default, spatial resnet_act_fn: str = "swish", resnet_groups: int = 32, attn_groups: Optional[int] = None, resnet_pre_norm: bool = True, add_attention: bool = True, attention_head_dim: int = 1, output_scale_factor: float = 1.0, ): super().__init__() resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) self.add_attention = add_attention if attn_groups is None: attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None # there is always at least one resnet resnets = [ ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] if attention_head_dim is None: logger.warn( f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." ) attention_head_dim = in_channels for _ in range(num_layers): if self.add_attention: # Spatial attention attentions.append( Attention( in_channels, heads=in_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=attn_groups, spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True, ) ) else: attentions.append(None) resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: hidden_states = self.resnets[0](hidden_states, temb) t = hidden_states.shape[2] for attn, resnet in zip(self.attentions, self.resnets[1:]): if attn is not None: hidden_states = rearrange(hidden_states, 'b c t h w -> b t c h w') hidden_states = rearrange(hidden_states, 'b t c h w -> (b t) c h w') hidden_states = attn(hidden_states, temb=temb) hidden_states = rearrange(hidden_states, '(b t) c h w -> b t c h w', t=t) hidden_states = rearrange(hidden_states, 'b t c h w -> b c t h w') hidden_states = resnet(hidden_states, temb) return hidden_states class CausalUNetMidBlock2D(nn.Module): """ A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks. Args: in_channels (`int`): The number of input channels. temb_channels (`int`): The number of temporal embedding channels. dropout (`float`, *optional*, defaults to 0.0): The dropout rate. num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. resnet_time_scale_shift (`str`, *optional*, defaults to `default`): The type of normalization to apply to the time embeddings. This can help to improve the performance of the model on tasks with long-range temporal dependencies. resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. resnet_groups (`int`, *optional*, defaults to 32): The number of groups to use in the group normalization layers of the resnet blocks. attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. resnet_pre_norm (`bool`, *optional*, defaults to `True`): Whether to use pre-normalization for the resnet blocks. add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. attention_head_dim (`int`, *optional*, defaults to 1): Dimension of a single attention head. The number of attention heads is determined based on this value and the number of input channels. output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. Returns: `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, in_channels, height, width)`. """ def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", # default, spatial resnet_act_fn: str = "swish", resnet_groups: int = 32, attn_groups: Optional[int] = None, resnet_pre_norm: bool = True, add_attention: bool = True, attention_head_dim: int = 1, output_scale_factor: float = 1.0, ): super().__init__() resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) self.add_attention = add_attention if attn_groups is None: attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None # there is always at least one resnet resnets = [ CausalResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] if attention_head_dim is None: logger.warn( f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." ) attention_head_dim = in_channels for _ in range(num_layers): if self.add_attention: # Spatial attention attentions.append( Attention( in_channels, heads=in_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=attn_groups, spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True, ) ) else: attentions.append(None) resnets.append( CausalResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: hidden_states = self.resnets[0](hidden_states, temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) t = hidden_states.shape[2] for attn, resnet in zip(self.attentions, self.resnets[1:]): if attn is not None: hidden_states = rearrange(hidden_states, 'b c t h w -> b t c h w') hidden_states = rearrange(hidden_states, 'b t c h w -> (b t) c h w') hidden_states = attn(hidden_states, temb=temb) hidden_states = rearrange(hidden_states, '(b t) c h w -> b t c h w', t=t) hidden_states = rearrange(hidden_states, 'b t c h w -> b c t h w') hidden_states = resnet(hidden_states, temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) return hidden_states class DownEncoderBlockCausal3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_spatial_downsample: bool = True, add_temporal_downsample: bool = False, downsample_padding: int = 1, ): super().__init__() resnets = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( CausalResnetBlock3D( in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_spatial_downsample: self.downsamplers = nn.ModuleList( [ CausalDownsample2x( out_channels, use_conv=True, out_channels=out_channels, ) ] ) else: self.downsamplers = None if add_temporal_downsample: self.temporal_downsamplers = nn.ModuleList( [ CausalTemporalDownsample2x( out_channels, use_conv=True, out_channels=out_channels, ) ] ) else: self.temporal_downsamplers = None def forward(self, hidden_states: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: for resnet in self.resnets: hidden_states = resnet(hidden_states, temb=None, is_init_image=is_init_image, temporal_chunk=temporal_chunk) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) if self.temporal_downsamplers is not None: for temporal_downsampler in self.temporal_downsamplers: hidden_states = temporal_downsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) return hidden_states class DownEncoderBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_spatial_downsample: bool = True, add_temporal_downsample: bool = False, downsample_padding: int = 1, ): super().__init__() resnets = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_spatial_downsample: self.downsamplers = nn.ModuleList( [ Downsample2D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None if add_temporal_downsample: self.temporal_downsamplers = nn.ModuleList( [ TemporalDownsample2x( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, ) ] ) else: self.temporal_downsamplers = None def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: for resnet in self.resnets: hidden_states = resnet(hidden_states, temb=None) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) if self.temporal_downsamplers is not None: for temporal_downsampler in self.temporal_downsamplers: hidden_states = temporal_downsampler(hidden_states) return hidden_states class UpDecoderBlock2D(nn.Module): def __init__( self, in_channels: int, out_channels: int, resolution_idx: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", # default, spatial resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_spatial_upsample: bool = True, add_temporal_upsample: bool = False, temb_channels: Optional[int] = None, interpolate: bool = True, ): super().__init__() resnets = [] for i in range(num_layers): input_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock2D( in_channels=input_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_spatial_upsample: self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) else: self.upsamplers = None if add_temporal_upsample: self.temporal_upsamplers = nn.ModuleList([TemporalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) else: self.temporal_upsamplers = None self.resolution_idx = resolution_idx def forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, is_image: bool = False, ) -> torch.FloatTensor: for resnet in self.resnets: hidden_states = resnet(hidden_states, temb=temb, scale=scale) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) if self.temporal_upsamplers is not None: for temporal_upsampler in self.temporal_upsamplers: hidden_states = temporal_upsampler(hidden_states, is_image=is_image) return hidden_states class UpDecoderBlockCausal3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, resolution_idx: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", # default, spatial resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_spatial_upsample: bool = True, add_temporal_upsample: bool = False, temb_channels: Optional[int] = None, interpolate: bool = True, ): super().__init__() resnets = [] for i in range(num_layers): input_channels = in_channels if i == 0 else out_channels resnets.append( CausalResnetBlock3D( in_channels=input_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.resnets = nn.ModuleList(resnets) if add_spatial_upsample: self.upsamplers = nn.ModuleList([CausalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) else: self.upsamplers = None if add_temporal_upsample: self.temporal_upsamplers = nn.ModuleList([CausalTemporalUpsample2x(out_channels, use_conv=True, out_channels=out_channels, interpolate=interpolate)]) else: self.temporal_upsamplers = None self.resolution_idx = resolution_idx def forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, is_init_image=True, temporal_chunk=False, ) -> torch.FloatTensor: for resnet in self.resnets: hidden_states = resnet(hidden_states, temb=temb, is_init_image=is_init_image, temporal_chunk=temporal_chunk) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) if self.temporal_upsamplers is not None: for temporal_upsampler in self.temporal_upsamplers: hidden_states = temporal_upsampler(hidden_states, is_init_image=is_init_image, temporal_chunk=temporal_chunk) return hidden_states