import whisper from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModelForSeq2SeqLM import os import tempfile import subprocess # Load Whisper model model = whisper.load_model("base") def process_video(video_path, language, progress=None): output_video_path = os.path.join(tempfile.gettempdir(), "converted_video.mp4") srt_path = os.path.join(tempfile.gettempdir(), "subtitles.srt") try: # Convert video to MP4 using ffmpeg if progress: progress(0.2, desc="🔄 Converting video to MP4...") subprocess.run( ["ffmpeg", "-i", video_path, "-c:v", "libx264", "-preset", "fast", output_video_path], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) # Transcribe video if progress: progress(0.4, desc="📝 Transcribing audio...") result = model.transcribe(output_video_path, language="en") if progress: progress(0.6, desc="🌐 Translating subtitles...") # Translation logic segments = [] if language == "English": segments = result["segments"] else: model_map = { "Hindi": "Helsinki-NLP/opus-mt-en-hi", "Spanish": "Helsinki-NLP/opus-mt-en-es", "French": "Helsinki-NLP/opus-mt-en-fr", "German": "Helsinki-NLP/opus-mt-en-de", "Telugu": "facebook/nllb-200-distilled-600M", "Portuguese": "Helsinki-NLP/opus-mt-en-pt", "Russian": "Helsinki-NLP/opus-mt-en-ru", "Chinese": "Helsinki-NLP/opus-mt-en-zh", "Arabic": "Helsinki-NLP/opus-mt-en-ar", "Japanese": "Helsinki-NLP/opus-mt-en-jap" } model_name = model_map.get(language) if not model_name: return None # Load translation model if language == "Telugu": tokenizer = AutoTokenizer.from_pretrained(model_name) translation_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) tgt_lang = "tel_Telu" for segment in result["segments"]: inputs = tokenizer(segment["text"], return_tensors="pt", padding=True) translated_tokens = translation_model.generate( **inputs, forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang) ) translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]}) else: tokenizer = MarianTokenizer.from_pretrained(model_name) translation_model = MarianMTModel.from_pretrained(model_name) for segment in result["segments"]: inputs = tokenizer(segment["text"], return_tensors="pt", padding=True) translated = translation_model.generate(**inputs) translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) segments.append({"text": translated_text, "start": segment["start"], "end": segment["end"]}) # Create SRT file if progress: progress(0.8, desc="📝 Generating SRT file...") with open(srt_path, "w", encoding="utf-8") as f: for i, segment in enumerate(segments, 1): start = f"{segment['start']:.3f}".replace(".", ",") end = f"{segment['end']:.3f}".replace(".", ",") text = segment["text"].strip() f.write(f"{i}\n00:00:{start} --> 00:00:{end}\n{text}\n\n") if progress: progress(1.0, desc="✅ Done!") return srt_path except subprocess.CalledProcessError as e: print(f"FFmpeg Error: {e.stderr.decode()}") return None except Exception as e: print(f"Unexpected Error: {str(e)}") return None finally: # Clean up temporary files if os.path.exists(output_video_path): os.remove(output_video_path) if os.path.exists(video_path): os.remove(video_path)