from crewai import Task, Agent, Crew, Process from langchain.tools import tool, Tool import re import os from langchain_groq import ChatGroq # llm = ChatGroq(model='mixtral-8x7b-32768', temperature=0.6, max_tokens=2048) llm = ChatGroq(model='llama3-70b-8192', temperature=0.6, max_tokens=1024, api_key='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') from langchain_community.tools import WikipediaQueryRun from langchain_community.utilities import WikipediaAPIWrapper from langchain_core.pydantic_v1 import BaseModel, Field import requests # import pyttsx3 import io import tempfile from gtts import gTTS from pydub import AudioSegment from groq import Groq import cv2 import numpy as np from PIL import Image, ImageDraw, ImageFont from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip from openai import OpenAI def split_text_into_chunks(text, chunk_size): words = text.split() return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)] def add_text_to_video(input_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255), outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.3, font_path='Montserrat-Bold.ttf'): temp_output_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') output_video = temp_output_file.name chunks = split_text_into_chunks(text, 3) # Adjust chunk size as needed cap = cv2.VideoCapture(input_video) fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) out = cv2.VideoWriter(output_video, fourcc, fps, (width, height)) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) chunk_duration_frames = duration * fps delay_frames = int(delay_between_chunks * fps) font = ImageFont.truetype(font_path, fontsize) current_frame = 0 while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) draw = ImageDraw.Draw(frame_pil) chunk_index = current_frame // (chunk_duration_frames + delay_frames) if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks): chunk = chunks[chunk_index] text_bbox = draw.textbbox((0, 0), chunk, font=font) text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] text_x = (width - text_width) // 2 text_y = height - 400 # Position text at the bottom if text_width > width: words = chunk.split() half = len(words) // 2 line1 = ' '.join(words[:half]) line2 = ' '.join(words[half:]) text_size_line1 = draw.textsize(line1, font=font) text_size_line2 = draw.textsize(line2, font=font) text_x_line1 = (width - text_size_line1[0]) // 2 text_x_line2 = (width - text_size_line2[0]) // 2 text_y = height - 250 - text_size_line1[1] # Adjust vertical position for two lines for dx in range(-outline_thickness, outline_thickness + 1): for dy in range(-outline_thickness, outline_thickness + 1): if dx != 0 or dy != 0: draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color) draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color) draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor) draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=fontcolor) else: for dx in range(-outline_thickness, outline_thickness + 1): for dy in range(-outline_thickness, outline_thickness + 1): if dx != 0 or dy != 0: draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color) draw.text((text_x, text_y), chunk, font=font, fill=fontcolor) frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR) out.write(frame) current_frame += 1 # Ensure loop breaks after processing all frames if current_frame >= frame_count: break cap.release() out.release() cv2.destroyAllWindows() return output_video def apply_zoom_in_effect(clip, zoom_factor=1.2): width, height = clip.size duration = clip.duration def zoom_in_effect(get_frame, t): frame = get_frame(t) zoom = 1 + (zoom_factor - 1) * (t / duration) new_width, new_height = int(width * zoom), int(height * zoom) resized_frame = cv2.resize(frame, (new_width, new_height)) x_start = (new_width - width) // 2 y_start = (new_height - height) // 2 cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width] return cropped_frame return clip.fl(zoom_in_effect, apply_to=['mask']) @tool def create_video_from_images_and_audio(images_dir, speeches_dir, final_video_filename): """Creates video using images and audios. Args: images_dir: path to images folder speeches_dir: path to speeches folder final_video_filename: the topic name which will be used as final video file name""" client = Groq(api_key='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') # images_paths = sorted(os.listdir(images_dir)) # audio_paths = sorted(os.listdir(speeches_dir)) images_paths = sorted([os.path.join(images_dir, img) for img in os.listdir(images_dir) if img.endswith('.png') or img.endswith('.jpg')]) audio_paths = sorted([os.path.join(speeches_dir, speech) for speech in os.listdir(speeches_dir) if speech.endswith('.mp3')]) clips = [] temp_files = [] for i in range(min(len(images_paths), len(audio_paths))): img_clip = ImageClip(os.path.join(images_dir, images_paths[i])) audioclip = AudioFileClip(os.path.join(speeches_dir, audio_paths[i])) videoclip = img_clip.set_duration(audioclip.duration) zoomed_clip = apply_zoom_in_effect(videoclip, 1.3) with open(os.path.join(speeches_dir, audio_paths[i]), "rb") as file: transcription = client.audio.transcriptions.create( file=(audio_paths[i], file.read()), model="whisper-large-v3", response_format="verbose_json", ) caption = transcription.text temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24) temp_files.append(temp_video_path) final_video_path = add_text_to_video(temp_video_path, caption, duration=1, fontsize=60) temp_files.append(final_video_path) final_clip = VideoFileClip(final_video_path) final_clip = final_clip.set_audio(audioclip) print(f'create small video {i}') clips.append(final_clip) final_clip = concatenate_videoclips(clips) if not final_video_filename.endswith('.mp4'): final_video_filename = final_video_filename + '.mp4' final_clip.write_videofile(final_video_filename, codec='libx264', fps=24) # Close all video files properly for clip in clips: clip.close() # Remove all temporary files for temp_file in temp_files: try: os.remove(temp_file) except Exception as e: print(f"Error removing file {temp_file}: {e}") return final_video_filename from langchain.pydantic_v1 import BaseModel, Field from langchain_community.tools import WikipediaQueryRun from langchain_community.utilities import WikipediaAPIWrapper class WikiInputs(BaseModel): """Inputs to the wikipedia tool.""" query: str = Field(description="query to look up in Wikipedia, should be 3 or less words") api_wrapper = WikipediaAPIWrapper(top_k_results=2)#, doc_content_chars_max=100) wiki_tool = WikipediaQueryRun( name="wiki-tool", description="{query:'input here'}", args_schema=WikiInputs, api_wrapper=api_wrapper, return_direct=True, ) wiki = Tool( name = 'wikipedia', func = wiki_tool.run, description= "{query:'input here'}" ) def process_script(script): """Used to process the script into dictionary format""" dict = {} text_for_image_generation = re.findall(r'(.*?)', script, re.DOTALL) text_for_speech_generation = re.findall(r'(.*?)', script, re.DOTALL) dict['text_for_image_generation'] = text_for_image_generation dict['text_for_speech_generation'] = text_for_speech_generation return dict def generate_speech(text, lang='en', speed=1.15, num=0): """ Generates speech for the given script using gTTS and adjusts the speed. """ temp_speech_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') temp_speech_path = temp_speech_file.name tts = gTTS(text=text, lang=lang) tts.save(temp_speech_path) sound = AudioSegment.from_file(temp_speech_path) if speed != 1.0: sound_with_altered_speed = sound._spawn(sound.raw_data, overrides={ "frame_rate": int(sound.frame_rate * speed) }).set_frame_rate(sound.frame_rate) sound_with_altered_speed.export(temp_speech_path, format="mp3") else: sound.export(temp_speech_path, format="mp3") temp_speech_file.close() return temp_speech_path @tool def image_generator(script, model): """Generates images for the given script. Saves it to a temporary directory and returns the path. Args: script: a complete script containing narrations and image descriptions. model: image generation model used to generate images, can be 'Stability' or 'Dalle-2'""" remove_temp_files('/tmp') images_dir = tempfile.mkdtemp() dict = process_script(script) if model == 'Stability': for i, text in enumerate(dict['text_for_image_generation']): try: response = requests.post( f"https://api.stability.ai/v2beta/stable-image/generate/core", headers={ "authorization": os.environ.get('STABILITY_AI_API_KEY'), "accept": "image/*" }, files={"none": ''}, data={ "prompt": text, "output_format": "png", 'aspect_ratio': "9:16", }, ) print(f'image {i} generated') if response.status_code == 200: with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file: file.write(response.content) else: raise Exception(str(response.json())) except Exception as e: raise Exception(f"Image generation failed: {e}") elif model == 'Dalle-2': client = OpenAI(api_key=os.getenv('OPENAI_API_KEY')) for i, text in enumerate(dict['text_for_image_generation']): try: response = client.images.generate( model="dall-e-2", prompt=text, size="1024x1024", quality="standard", n=1 ) image_url = response.data[0].url print(f'image {i} generated') # Download the image image_response = requests.get(image_url) if image_response.status_code == 200: with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file: file.write(image_response.content) else: raise Exception(f"Failed to download image with status code {image_response.status_code} and message: {image_response.text}") except Exception as e: raise Exception(f"Image generation failed: {e}") return f'images are stored in {images_dir} directory' @tool def speech_generator(script): """ Generates speech files for the given script using gTTS. Saves them to a temporary directory and returns the path. Args: script: a complete script containing narrations and image descriptions. """ speeches_dir = tempfile.mkdtemp() dict = process_script(script) for i, text in enumerate(dict['text_for_speech_generation']): speech_path = generate_speech(text, num=i) print(f'speech {i} generated') os.rename(speech_path, os.path.join(speeches_dir, f'speech_{i}.mp3')) return f'speeches are stored in {speeches_dir} directory' def find_temp_files(directory): temp_files = [] for root, dirs, files in os.walk(directory): for file in files: file_path = os.path.join(root, file) if os.path.isfile(file_path) and file_path.startswith('/tmp'): temp_files.append(file_path) return temp_files def remove_temp_files(directory): temp_files = find_temp_files(directory) for temp_file in temp_files: try: os.remove(temp_file) print(f"Removed temp file: {temp_file}") except Exception as e: print(f"Error removing temp file {temp_file}: {e}") # # Example usage # remove_temp_files('/tmp') import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.mime.base import MIMEBase from email import encoders import os def send_mail(user_mail, video_path): # Email configuration sender_email = 'prudhvisneha2003@gmail.com' receiver_email = user_mail password = 'pzxb drfj aebj ypuv' # Normally, you should store sensitive information like passwords securely. # Create message container - the correct MIME type is multipart/alternative. msg = MIMEMultipart('alternative') msg['Subject'] = 'From ShortsIn' msg['From'] = sender_email msg['To'] = receiver_email # Create the plain-text and HTML version of your message text = "Hello," html = """\

Hello,
Thank you for using ShortsIn.

""" # Attach parts into message container part1 = MIMEText(text, 'plain') part2 = MIMEText(html, 'html') msg.attach(part1) msg.attach(part2) if os.path.isfile(video_path): with open(video_path, 'rb') as attachment: part = MIMEBase('application', 'octet-stream') part.set_payload(attachment.read()) encoders.encode_base64(part) part.add_header( 'Content-Disposition', f'attachment; filename= {os.path.basename(video_path)}', ) msg.attach(part) else: print(f"Error: The file {video_path} does not exist.") return # Initialize server variable server = None # Connect to the SMTP server try: server = smtplib.SMTP('smtp.gmail.com', 587) # Example SMTP server and port server.starttls() # Secure the connection server.login(sender_email, password) server.sendmail(sender_email, receiver_email, msg.as_string()) print('Email sent successfully!') except Exception as e: print(f'Error sending email: {str(e)}') finally: if server: server.quit()