Spaces:
Runtime error
Runtime error
from langchain.tools import tool | |
from crewai_tools import ScrapeWebsiteTool | |
from gtts import gTTS | |
from pydub import AudioSegment | |
from groq import Groq | |
from PIL import Image, ImageDraw, ImageFont | |
from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips, ImageClip | |
import requests | |
import os | |
import tempfile | |
import re | |
import base64 | |
import pypandoc | |
import cv2 | |
import numpy as np | |
import warnings | |
warnings.filterwarnings('ignore') | |
from pathlib import Path | |
from openai import OpenAI | |
# !sudo apt-get install pandoc | |
def scrape_website(website_url): | |
"""Scrapes all the information from the given website. | |
Args: | |
website_url: A url of a company website. | |
Returns: | |
Scraped information from the given website. | |
""" | |
scrapper = ScrapeWebsiteTool() | |
data = scrapper.run(website_url=website_url) | |
return data | |
def convert_md_to_docx(md_file_path, docx_file_path): | |
output = pypandoc.convert_file(md_file_path, 'docx', outputfile=docx_file_path) | |
assert output == "", "Conversion failed" | |
print(f"Converted {md_file_path} to {docx_file_path}") | |
# def generate_image(text, num): | |
# engine_id = "stable-diffusion-v1-6" | |
# api_host = os.getenv('API_HOST', 'https://api.stability.ai') | |
# api_key = 'sk-5VTo97D19Ruf2zLinj3pQbVXmLmh2Ps354PGkufTHtqmB2BN' | |
# if api_key is None: | |
# raise Exception("Missing Stability API key.") | |
# response = requests.post( | |
# f"{api_host}/v1/generation/{engine_id}/text-to-image", | |
# headers={ | |
# "Content-Type": "application/json", | |
# "Accept": "application/json", | |
# "Authorization": f"Bearer {api_key}" | |
# }, | |
# json={ | |
# "text_prompts": [ | |
# { | |
# "text": text | |
# } | |
# ], | |
# "cfg_scale": 7, | |
# "height": 512, | |
# "width": 512, | |
# "samples": 1, | |
# "steps": 10, | |
# }, | |
# ) | |
# print(response.status_code) | |
# if response.status_code != 200: | |
# raise Exception("Non-200 response: " + str(response.text)) | |
# data = response.json() | |
# # base64_image = None | |
# for image in data["artifacts"]: | |
# with open(f"image_{num}.png", "wb") as f: | |
# f.write(base64.b64decode(image["base64"])) | |
# # if base64_image is None: | |
# # raise Exception("No image was generated.") | |
# return f'image_{num}.png' | |
# def generate_image_core(text, num): | |
# response = requests.post( | |
# f"https://api.stability.ai/v2beta/stable-image/generate/core", | |
# headers={ | |
# "authorization": f"sk-6iUj0Jg2eeKDOpRJuDmCDSvPJdUJ6oP6qrQY3sujqR8h4ycF", | |
# "accept": "image/*" | |
# }, | |
# files={"none": ''}, | |
# data={ | |
# "prompt": text, | |
# "output_format": "png", | |
# 'aspect_ratio': "3:2" | |
# }, | |
# ) | |
# print(response.status_code) | |
# if response.status_code == 200: | |
# with open(f"image_{num}.png", 'wb') as file: | |
# file.write(response.content) | |
# else: | |
# raise Exception(str(response.json())) | |
# return f'image_{num}.png' | |
# def generate_image_openai(text, num): | |
# client = OpenAI(api_key='sk-proj-TVCjX5VGWF5s18k0Z1G1T3BlbkFJZYp0HIC4NnxzqC0ne4YG') | |
# try: | |
# print(2) | |
# response = client.images.generate( | |
# model="dall-e-2", | |
# prompt=text, | |
# size="512x512", | |
# quality="standard", | |
# n=1 | |
# ) | |
# print(3) | |
# image_url = response.data[0].url | |
# print(4) | |
# print(f'image {num} generated') | |
# image_response = requests.get(image_url) | |
# print(5) | |
# if image_response.status_code == 200: | |
# with open(os.path.join(f'image_{num}.png'), 'wb') as file: | |
# print(6) | |
# file.write(image_response.content) | |
# print(7) | |
# else: | |
# raise Exception(f"Failed to download image with status code {image_response.status_code} and message: {image_response.text}") | |
# except Exception as e: | |
# raise Exception(f"Image generation failed: {e}") | |
# return f'image_{num}.png' | |
# @tool | |
# def generate_images_and_add_to_blog(blog_content): | |
# """This tool is used to generate images and add them to blog | |
# Args: | |
# blog_content: A complete blog with prompts enclosed in <image> prompt </image> tag. | |
# Returns: | |
# A complete blog""" | |
# print('hi') | |
# image_descriptions = re.findall(r'<image>(.*?)</image>', blog_content) | |
# for i, text in enumerate(image_descriptions): | |
# try: | |
# print(1) | |
# img_path = generate_image_openai(text, i) | |
# print(8) | |
# # image_tag = f'data:image/png;base64,{base64_img}' | |
# blog_content = blog_content.replace(f'<image>{text}</image>', f'') | |
# print(9) | |
# except Exception as e: | |
# print(e) | |
# raise Exception(f"Image generation failed: {e}") | |
# with open('blog_post.md', 'w') as f: | |
# f.write(blog_content) | |
# convert_md_to_docx('blog_post.md', 'blog_post.docx') | |
# return blog_content | |
def generate_image_openai(text, num): | |
temp_output_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png') | |
output_image = temp_output_file.name | |
client = OpenAI() | |
try: | |
response = client.images.generate( | |
model="dall-e-2", | |
prompt=text, | |
size="512x512", | |
quality="standard", | |
n=1 | |
) | |
image_url = response.data[0].url | |
print(f'image {num} generated') | |
image_response = requests.get(image_url) | |
print('response') | |
if image_response.status_code == 200: | |
with open(output_image, 'wb') as file: | |
file.write(image_response.content) | |
print('write') | |
else: | |
raise Exception(f"Failed to download image with status code {image_response.status_code} and message: {image_response.text}") | |
except Exception as e: | |
raise Exception(f"Image generation failed: {e}") | |
return output_image | |
def generate_images_and_add_to_blog(blog_content): | |
"""This tool is used to generate images and add them to blog | |
Args: | |
blog_content: A complete blog with prompts enclosed in <image> prompt </image> tag. | |
Returns: | |
A complete blog""" | |
print(blog_content) | |
print('*****************************************************') | |
print(type(blog_content)) | |
blog_content = str(blog_content) | |
image_descriptions = re.findall(r'<image>(.*?)</image>', blog_content) | |
for i, text in enumerate(image_descriptions): | |
try: | |
temp_folder = tempfile.mkdtemp() | |
img_path = generate_image_openai(text, i) | |
# image_tag = f'data:image/png;base64,{base64_img}' | |
print(img_path) | |
blog_content = blog_content.replace(f'<image>{text}</image>', f'') | |
print('blog content') | |
except Exception as e: | |
print(e) | |
raise Exception(f"Image generation failed: {e}") | |
try: | |
print('blog') | |
with open('blog_post.md', 'w') as f: | |
f.write(blog_content) | |
print('convert') | |
convert_md_to_docx('blog_post.md', 'blog_post.docx') | |
print('converted') | |
except error: | |
print(error) | |
return blog_content | |
def process_script(script): | |
"""Used to process the script into dictionary format""" | |
dict = {} | |
text_for_image_generation = re.findall(r'<image>(.*?)</?image>', script, re.DOTALL) | |
text_for_speech_generation = re.findall(r'<narration>(.*?)</?narration>', script, re.DOTALL) | |
dict['text_for_image_generation'] = text_for_image_generation | |
dict['text_for_speech_generation'] = text_for_speech_generation | |
return dict | |
def generate_speech(text, lang='en', speed=1.0, num=0): | |
""" | |
Generates speech for the given script using gTTS and adjusts the speed. | |
""" | |
temp_speech_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') | |
temp_speech_path = temp_speech_file.name | |
client = OpenAI() | |
speech_file_path = temp_speech_path | |
response = client.audio.speech.create( | |
model="tts-1", | |
voice="echo", | |
input= text | |
) | |
response.stream_to_file(speech_file_path) | |
# tts = gTTS(text=text, lang=lang) | |
# tts.save(temp_speech_path) | |
sound = AudioSegment.from_file(temp_speech_path) | |
if speed != 1.0: | |
sound_with_altered_speed = sound._spawn(sound.raw_data, overrides={ | |
"frame_rate": int(sound.frame_rate * speed) | |
}).set_frame_rate(sound.frame_rate) | |
sound_with_altered_speed.export(temp_speech_path, format="mp3") | |
else: | |
sound.export(temp_speech_path, format="mp3") | |
temp_speech_file.close() | |
return temp_speech_path | |
# def image_generator(script): | |
# """Generates images for the given script. | |
# Saves it to a temporary directory and returns the path. | |
# Args: | |
# script: a complete script containing narrations and image descriptions.""" | |
# # remove_temp_files('/tmp') | |
# images_dir = tempfile.mkdtemp() | |
# dict = process_script(script) | |
# for i, text in enumerate(dict['text_for_image_generation']): | |
# try: | |
# # core | |
# # response = requests.post( | |
# # f"https://api.stability.ai/v2beta/stable-image/generate/core", | |
# # headers={ | |
# # "authorization": f"sk-5VTo97D19Ruf2zLinj3pQbVXmLmh2Ps354PGkufTHtqmB2BN", | |
# # "accept": "image/*" | |
# # }, | |
# # files={"none": ''}, | |
# # data={ | |
# # "prompt": text, | |
# # "output_format": "png", | |
# # 'aspect_ratio': "9:16" | |
# # }, | |
# # ) | |
# # print(response.status_code) | |
# # if response.status_code == 200: | |
# # with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file: | |
# # file.write(response.content) | |
# # else: | |
# # raise Exception(str(response.json())) | |
# # v1 | |
# # engine_id = "stable-diffusion-v1-6" | |
# # api_host = os.getenv('API_HOST', 'https://api.stability.ai') | |
# # api_key = 'sk-Z3EF1ebJ9oJUht6Q9fsh861wOsNhRFkxYXMYHNl7gt7xpBMD' | |
# # if api_key is None: | |
# # raise Exception("Missing Stability API key.") | |
# # response = requests.post( | |
# # f"{api_host}/v1/generation/{engine_id}/text-to-image", | |
# # headers={ | |
# # "Content-Type": "application/json", | |
# # "Accept": "application/json", | |
# # "Authorization": f"Bearer {api_key}" | |
# # }, | |
# # json={ | |
# # "text_prompts": [ | |
# # { | |
# # "text": text | |
# # } | |
# # ], | |
# # "cfg_scale": 7, | |
# # "height": 512, | |
# # "width": 512, | |
# # "samples": 1, | |
# # "steps": 10, | |
# # }, | |
# # ) | |
# # print(response.status_code) | |
# # if response.status_code != 200: | |
# # raise Exception("Non-200 response: " + str(response.text)) | |
# # data = response.json() | |
# # # base64_image = None | |
# # for image in data["artifacts"]: | |
# # with open(os.path.join(images_dir, f'image_{i}.png'), "wb") as f: | |
# # f.write(base64.b64decode(image["base64"])) | |
# pass | |
# except Exception as e: | |
# print(e) | |
# raise Exception(f"Image generation failed: {e}") | |
# return images_dir | |
def image_generator(script): | |
"""Generates images for the given script. | |
Saves it to a temporary directory and returns the path. | |
Args: | |
script: a complete script containing narrations and image descriptions.""" | |
# remove_temp_files('/tmp') | |
images_dir = tempfile.mkdtemp() | |
client = OpenAI() | |
dict = process_script(script) | |
for i, text in enumerate(dict['text_for_image_generation']): | |
try: | |
response = client.images.generate( | |
model="dall-e-2", | |
prompt=text, | |
size="512x512", | |
quality="standard", | |
n=1 | |
) | |
image_url = response.data[0].url | |
print(f'image {i} generated') | |
# Download the image | |
image_response = requests.get(image_url) | |
if image_response.status_code == 200: | |
with open(os.path.join(images_dir, f'image_{i}.png'), 'wb') as file: | |
file.write(image_response.content) | |
else: | |
raise Exception(f"Failed to download image with status code {image_response.status_code} and message: {image_response.text}") | |
except Exception as e: | |
raise Exception(f"Image generation failed: {e}") | |
return images_dir | |
def speech_generator(script): | |
""" | |
Generates speech files for the given script using gTTS. | |
Saves them to a temporary directory and returns the path. | |
Args: | |
script: a complete script containing narrations and image descriptions. | |
""" | |
speeches_dir = tempfile.mkdtemp() | |
dict = process_script(script) | |
for i, text in enumerate(dict['text_for_speech_generation']): | |
speech_path = generate_speech(text, num=i) | |
print(f'speech {i} generated') | |
os.rename(speech_path, os.path.join(speeches_dir, f'speech_{i}.mp3')) | |
return speeches_dir, dict['text_for_speech_generation'] | |
def split_text_into_chunks(text, chunk_size): | |
words = text.split() | |
return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)] | |
def add_text_to_video(input_video, text, duration=1, fontsize=40, fontcolor=(255, 255, 255), | |
outline_thickness=2, outline_color=(0, 0, 0), delay_between_chunks=0.3, | |
font_path='Montserrat-Bold.ttf'): | |
temp_output_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') | |
output_video = temp_output_file.name | |
chunks = split_text_into_chunks(text, 3) # Adjust chunk size as needed | |
cap = cv2.VideoCapture(input_video) | |
if not cap.isOpened(): | |
raise ValueError("Error opening video file.") | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
out = cv2.VideoWriter(output_video, fourcc, fps, (width, height)) | |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
chunk_duration_frames = duration * fps | |
delay_frames = int(delay_between_chunks * fps) | |
if not os.path.exists(font_path): | |
raise FileNotFoundError(f"Font file not found: {font_path}") | |
try: | |
font = ImageFont.truetype(font_path, fontsize) | |
except Exception as e: | |
raise RuntimeError(f"Error loading font: {e}") | |
current_frame = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_pil = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
draw = ImageDraw.Draw(frame_pil) | |
chunk_index = current_frame // (chunk_duration_frames + delay_frames) | |
if current_frame % (chunk_duration_frames + delay_frames) < chunk_duration_frames and chunk_index < len(chunks): | |
chunk = chunks[chunk_index] | |
text_bbox = draw.textbbox((0, 0), chunk, font=font) | |
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1] | |
text_x = (width - text_width) // 2 | |
text_y = height - 100 # Position text at the bottom | |
if text_width > width: | |
words = chunk.split() | |
half = len(words) // 2 | |
line1 = ' '.join(words[:half]) | |
line2 = ' '.join(words[half:]) | |
text_size_line1 = draw.textsize(line1, font=font) | |
text_size_line2 = draw.textsize(line2, font=font) | |
text_x_line1 = (width - text_size_line1[0]) // 2 | |
text_x_line2 = (width - text_size_line2[0]) // 2 | |
text_y = height - 250 - text_size_line1[1] # Adjust vertical position for two lines | |
for dx in range(-outline_thickness, outline_thickness + 1): | |
for dy in range(-outline_thickness, outline_thickness + 1): | |
if dx != 0 or dy != 0: | |
draw.text((text_x_line1 + dx, text_y + dy), line1, font=font, fill=outline_color) | |
draw.text((text_x_line2 + dx, text_y + text_size_line1[1] + dy), line2, font=font, fill=outline_color) | |
draw.text((text_x_line1, text_y), line1, font=font, fill=fontcolor) | |
draw.text((text_x_line2, text_y + text_size_line1[1]), line2, font=font, fill=fontcolor) | |
else: | |
for dx in range(-outline_thickness, outline_thickness + 1): | |
for dy in range(-outline_thickness, outline_thickness + 1): | |
if dx != 0 or dy != 0: | |
draw.text((text_x + dx, text_y + dy), chunk, font=font, fill=outline_color) | |
draw.text((text_x, text_y), chunk, font=font, fill=fontcolor) | |
frame = cv2.cvtColor(np.array(frame_pil), cv2.COLOR_RGB2BGR) | |
out.write(frame) | |
current_frame += 1 | |
# Ensure loop breaks after processing all frames | |
if current_frame >= frame_count: | |
break | |
cap.release() | |
out.release() | |
cv2.destroyAllWindows() | |
return output_video | |
def apply_zoom_in_effect(clip, zoom_factor=1.2): | |
width, height = clip.size | |
duration = clip.duration | |
def zoom_in_effect(get_frame, t): | |
frame = get_frame(t) | |
zoom = 1 + (zoom_factor - 1) * (t / duration) | |
new_width, new_height = int(width * zoom), int(height * zoom) | |
resized_frame = cv2.resize(frame, (new_width, new_height)) | |
x_start = (new_width - width) // 2 | |
y_start = (new_height - height) // 2 | |
cropped_frame = resized_frame[y_start:y_start + height, x_start:x_start + width] | |
return cropped_frame | |
return clip.fl(zoom_in_effect, apply_to=['mask']) | |
def create_video_from_images_and_audio(images_dir, speeches_dir, final_video_filename, all_captions): | |
"""Creates video using images and audios. | |
Args: | |
images_dir: path to images folder | |
speeches_dir: path to speeches folder | |
final_video_filename: the topic name which will be used as final video file name""" | |
print('hi') | |
client = Groq(api_key='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') | |
# images_paths = sorted(os.listdir(images_dir)) | |
# audio_paths = sorted(os.listdir(speeches_dir)) | |
images_paths = sorted([os.path.join(images_dir, img) for img in os.listdir(images_dir) if img.endswith('.png') or img.endswith('.jpg')]) | |
audio_paths = sorted([os.path.join(speeches_dir, speech) for speech in os.listdir(speeches_dir) if speech.endswith('.mp3')]) | |
clips = [] | |
temp_files = [] | |
video_dir = tempfile.mkdtemp() | |
for i in range(min(len(images_paths), len(audio_paths))): | |
img_clip = ImageClip(os.path.join(images_dir, images_paths[i])) | |
audioclip = AudioFileClip(os.path.join(speeches_dir, audio_paths[i])) | |
videoclip = img_clip.set_duration(audioclip.duration) | |
zoomed_clip = apply_zoom_in_effect(videoclip, 1.3) | |
# with open(os.path.join(speeches_dir, audio_paths[i]), "rb") as file: | |
# transcription = client.audio.transcriptions.create( | |
# file=(audio_paths[i], file.read()), | |
# model="whisper-large-v3", | |
# response_format="verbose_json", | |
# ) | |
# caption = transcription.text | |
temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name | |
zoomed_clip.write_videofile(temp_video_path, codec='libx264', fps=24) | |
temp_files.append(temp_video_path) | |
caption = all_captions[i] | |
final_video_path = add_text_to_video(temp_video_path, caption, duration=1, fontsize=20) | |
temp_files.append(final_video_path) | |
final_clip = VideoFileClip(final_video_path) | |
final_clip = final_clip.set_audio(audioclip) | |
print(f'create small video {i}') | |
clips.append(final_clip) | |
final_clip = concatenate_videoclips(clips) | |
if not final_video_filename.endswith('.mp4'): | |
final_video_filename = final_video_filename + '.mp4' | |
final_clip.write_videofile(os.path.join(video_dir, final_video_filename), codec='libx264', fps=24) | |
# Close all video files properly | |
for clip in clips: | |
clip.close() | |
# Remove all temporary files | |
for temp_file in temp_files: | |
try: | |
os.remove(temp_file) | |
except Exception as e: | |
print(f"Error removing file {temp_file}: {e}") | |
return os.path.join(video_dir, final_video_filename) | |
def generate_video(pairs, final_video_filename): | |
""" Generates video using narration and image prompt pairs. | |
Args: | |
pairs:A string of arration and image prompt pairs enclosed in <narration> and <image> tags. | |
final_video_filename: the topic name which will be used as final video file name | |
Returns: | |
Generated video path""" | |
images_dir = image_generator(pairs) | |
print(images_dir) | |
speeches_dir, all_captions = speech_generator(pairs) | |
print(speeches_dir) | |
video_path = create_video_from_images_and_audio(images_dir, speeches_dir, final_video_filename, all_captions) | |
print('video', video_path) | |
with open(video_path, 'rb') as f: | |
video = f.read() | |
with open('video.mp4', 'wb') as f: | |
f.write(video) | |
return video_path |