Kaleidoscope / pages /01_Parts of Speech Annotation.py
ProfessorLeVesseur's picture
Update pages/01_Parts of Speech Annotation.py
8f06cb3 verified
#------------------------------------------------------------------------
# Import Modules
#------------------------------------------------------------------------
import streamlit as st
import spacy
import string
from annotated_text import annotated_text
from PIL import Image
spacy.cli.download("en_core_web_sm") # Download and install the model
# Load the English NLP model
nlp = spacy.load("en_core_web_sm")
#------------------------------------------------------------------------
# Configurations
#------------------------------------------------------------------------
# Streamlit page setup
# icon = Image.open("MTSS.ai_Icon.png")
icon = Image.open("MTSS.ai_Icon.png")
st.set_page_config(
page_title="Kaleidoscope | Text Annotation",
page_icon=icon,
layout="centered",
initial_sidebar_state="auto",
menu_items={
'About': "### *This application was created by* \n### LeVesseur Ph.D | MTSS.ai"
}
)
#------------------------------------------------------------------------
# Header
#------------------------------------------------------------------------
# st.image('MTSS.ai_Logo.png', width=300)
st.title('MTSS:grey[.ai]')
st.header('Kaleidoscope:grey[ | Parts of Speech Annotation]')
#------------------------------------------------------------------------
# Sidebar
#------------------------------------------------------------------------
contact = st.sidebar.toggle('Handmade by \n**LeVesseur** :grey[ PhD] \n| :grey[MTSS.ai]')
if contact:
st.sidebar.write('Inquiries: [[email protected]](mailto:[email protected]) \nProfile: [levesseur.com](http://levesseur.com) \nCheck out: [InkQA | Dynamic PDFs](http://www.inkqa.com)')
# Color options
colors = {
"Green (DAF1E7)": "#DAF1E7",
"Blue (BDE5FF)": "#BDE5FF",
"Navy (D1DBE9)": "#D1DBE9",
"Teal (D6EAED)": "#D6EAED",
"Iceburg (E4EEF6)": "#E4EEF6",
"Vermillion (F6DCDD)": "#F6DCDD",
}
with st.sidebar:
st.divider()
# Sidebar display (Option 1: Color blocks with hex)
st.sidebar.header("Recommended Colors")
for color_name, hex_code in colors.items():
st.sidebar.color_picker(color_name, hex_code)
st.subheader("Example")
annotated_text(
("I", "Pronoun", "#F6DCDD"),
" ",
"really",
" ",
("appreciate", "Verb", "#DAF1E7"),
" ",
("all", "Pronoun", "#F6DCDD"),
" ",
("that", "Pronoun", "#F6DCDD"),
" ",
"the",
" ",
("social", "Adj", "#BDE5FF"),
" ",
"committee",
" ",
"has",
" ",
("done", "Verb", "#DAF1E7"),
" ",
"to",
" ",
("keep", "Verb", "#DAF1E7"),
" ",
("us", "Pronoun", "#F6DCDD"),
" ",
("feeling", "Verb", "#DAF1E7"),
" ",
("connected", "Adj", "#BDE5FF"),
" ",
".",
" ",
"I",
" ",
"also",
" ",
"really",
" ",
("value", "Verb", "#DAF1E7"),
" ",
("our", "Pronoun", "#F6DCDD"),
" ",
"in",
" ",
"-person",
" ",
("meetings", "Noun", "#D1DBE9"),
" ",
"and",
" ",
"the",
" ",
"social",
" ",
("opportunities", "Noun", "#D1DBE9"),
" ",
("built", "Verb", "#DAF1E7"),
" ",
"into",
" ",
"these",
" ",
"meetings",
" ",
".",
)
st.divider()
st.subheader("Directions for Using the Text Annotation Tool")
directions = """
1. **Enter Your Text**:
- Type the text you want to annotate in the text area provided.
2. **Select Parts of Speech**:
- Choose which parts of speech you want to include in the annotation by checking the corresponding boxes (e.g., Verbs, Adjectives, Nouns, Pronouns).
3. **Submit Your Text**:
- Click the "Submit Text" button to process your input. The app will automatically label and color the words based on the selected parts of speech.
4. **Review the Annotations**:
- The annotated text will be displayed, showing the parts of speech labels and colors applied to the words.
5. **Adjust Annotations (Optional)**:
- You can manually adjust the labels and colors for each word if needed.
6. **Generate Annotated Text**:
- After reviewing and adjusting the annotations, click the "Generate Annotated Text" button.
- The final annotated text will be displayed.
7. **Take a Screenshot**:
- To use the annotated text, take a screenshot of the displayed text.
8. **Adjust Text Width** (Optional):
- If you want to adjust the width of the sentences for a better screenshot, minimize or resize your browser window accordingly before taking the screenshot.
"""
st.markdown(directions)
#------------------------------------------------------------------------
# Functions: Parts of Speech
#------------------------------------------------------------------------
# # Function to split text into words
# def split_text(text):
# # Add a space before punctuation marks
# for char in string.punctuation:
# text = text.replace(char, f" {char}")
# return text.split()
# # Function to automatically label and color words based on parts of speech
# def auto_label_and_color_words(doc, words):
# labels = [""] * len(words)
# colors = ["#FFFFFF"] * len(words)
# word_positions = {i: word for i, word in enumerate(words)}
# for token in doc:
# # Match token with the words from the original text
# for index, word in word_positions.items():
# if token.text == word:
# if token.pos_ == "VERB":
# labels[index] = "Verb"
# colors[index] = "#DAF1E7"
# elif token.pos_ == "ADJ":
# labels[index] = "Adj"
# colors[index] = "#BDE5FF"
# elif token.pos_ == "NOUN":
# labels[index] = "Noun"
# colors[index] = "#D1DBE9"
# elif token.pos_ == "PRON":
# labels[index] = "Pronoun"
# colors[index] = "#F6DCDD"
# break # Exit loop once the word is found and processed
# return labels, colors
# # Main Streamlit application
# st.title("Text Annotation Tool")
# # Initialize session state to store text and annotations
# if 'user_text' not in st.session_state:
# st.session_state.user_text = ""
# if 'words' not in st.session_state:
# st.session_state.words = []
# if 'labels' not in st.session_state:
# st.session_state.labels = []
# if 'colors' not in st.session_state:
# st.session_state.colors = []
# if 'extracted_pos' not in st.session_state:
# st.session_state.extracted_pos = {}
# # User input for the text
# user_text = st.text_area("Enter the text you want to annotate:", value=st.session_state.user_text, height=100)
# # Button to process the text
# if st.button("Submit Text"):
# st.session_state.user_text = user_text
# st.session_state.words = split_text(user_text)
# # Process the text with spaCy
# doc = nlp(user_text)
# # Automatically label and color words based on parts of speech
# st.session_state.labels, st.session_state.colors = auto_label_and_color_words(doc, st.session_state.words)
# # Extract parts of speech
# st.session_state.extracted_pos = {
# "verbs": [token.text for token in doc if token.pos_ == "VERB"],
# "adjectives": [token.text for token in doc if token.pos_ == "ADJ"],
# "nouns": [token.text for token in doc if token.pos_ == "NOUN"],
# "pronouns": [token.text for token in doc if token.pos_ == "PRON"]
# }
# # Display extracted parts of speech
# if st.session_state.extracted_pos:
# st.subheader("Extracted Parts of Speech")
# st.write("**Verbs:**", st.session_state.extracted_pos.get("verbs", []))
# st.write("**Adjectives:**", st.session_state.extracted_pos.get("adjectives", []))
# st.write("**Nouns:**", st.session_state.extracted_pos.get("nouns", []))
# st.write("**Pronouns:**", st.session_state.extracted_pos.get("pronouns", []))
# # Collect annotation inputs for each word
# if st.session_state.words:
# for i, word in enumerate(st.session_state.words):
# st.write(f"Annotate the word: {word}")
# st.session_state.labels[i] = st.selectbox(
# f"Label for '{word}'", ["", "Verb", "Adj", "Noun", "Pronoun"],
# key=f"label_{i}", index=["", "Verb", "Adj", "Noun", "Pronoun"].index(st.session_state.labels[i])
# )
# st.session_state.colors[i] = st.color_picker(
# f"Color for '{word}'",
# value=st.session_state.colors[i],
# key=f"color_{i}"
# )
# # Generate button to process the annotations
# if st.button("Generate Annotated Text"):
# annotated_elements = []
# for i, word in enumerate(st.session_state.words):
# if st.session_state.labels[i] and st.session_state.colors[i] != "#FFFFFF":
# annotated_elements.append((word, st.session_state.labels[i], st.session_state.colors[i]))
# else:
# annotated_elements.append(word)
# annotated_elements.append(" ") # Add space between words
# # Remove the last extra space added
# if annotated_elements and annotated_elements[-1] == " ":
# annotated_elements.pop()
# # Display the annotated text using the `annotated_text` function
# st.subheader("Annotated Text:")
# annotated_text(*annotated_elements)
# # Print the code for the annotated text
# st.subheader("Generated Code:")
# code_str = 'annotated_text(\n'
# for elem in annotated_elements:
# if isinstance(elem, tuple):
# code_str += f' ("{elem[0]}", "{elem[1]}", "{elem[2]}"),\n'
# else:
# code_str += f' "{elem}",\n'
# code_str += ')'
# st.code(code_str, language='python')
#------------------------------------------------------------------------
# Functions: Parts of Speech + Buttons
#------------------------------------------------------------------------
# Function to split text into words
def split_text(text):
# Add a space before punctuation marks
for char in string.punctuation:
text = text.replace(char, f" {char}")
return text.split()
# Function to automatically label and color words based on parts of speech
def auto_label_and_color_words(doc, words, include_verbs, include_adjectives, include_nouns, include_pronouns):
labels = [""] * len(words)
colors = ["#FFFFFF"] * len(words)
word_positions = {i: word for i, word in enumerate(words)}
for token in doc:
# Match token with the words from the original text
for index, word in word_positions.items():
if token.text == word:
if token.pos_ == "VERB" and include_verbs:
labels[index] = "Verb"
colors[index] = "#DAF1E7"
elif token.pos_ == "ADJ" and include_adjectives:
labels[index] = "Adj"
colors[index] = "#BDE5FF"
elif token.pos_ == "NOUN" and include_nouns:
labels[index] = "Noun"
colors[index] = "#D1DBE9"
elif token.pos_ == "PRON" and include_pronouns:
labels[index] = "Pronoun"
colors[index] = "#F6DCDD"
break # Exit loop once the word is found and processed
return labels, colors
# Initialize session state to store text and annotations
if 'user_text' not in st.session_state:
st.session_state.user_text = ""
if 'words' not in st.session_state:
st.session_state.words = []
if 'labels' not in st.session_state:
st.session_state.labels = []
if 'colors' not in st.session_state:
st.session_state.colors = []
if 'extracted_pos' not in st.session_state:
st.session_state.extracted_pos = {}
# User input for the text
user_text = st.text_area("Enter the text you want to annotate:", value=st.session_state.user_text, height=100)
# Checkboxes for parts of speech to include
include_verbs = st.checkbox("Include Verbs", value=True)
include_adjectives = st.checkbox("Include Adjectives", value=True)
include_nouns = st.checkbox("Include Nouns", value=True)
include_pronouns = st.checkbox("Include Pronouns", value=True)
# Button to process the text
if st.button("Submit Text"):
st.session_state.user_text = user_text
st.session_state.words = split_text(user_text)
# Process the text with spaCy
doc = nlp(user_text)
# Automatically label and color words based on parts of speech
st.session_state.labels, st.session_state.colors = auto_label_and_color_words(
doc, st.session_state.words, include_verbs, include_adjectives, include_nouns, include_pronouns)
# Extract parts of speech
st.session_state.extracted_pos = {
"verbs": [token.text for token in doc if token.pos_ == "VERB"],
"adjectives": [token.text for token in doc if token.pos_ == "ADJ"],
"nouns": [token.text for token in doc if token.pos_ == "NOUN"],
"pronouns": [token.text for token in doc if token.pos_ == "PRON"]
}
# Display extracted parts of speech
if st.session_state.extracted_pos:
st.subheader("Extracted Parts of Speech")
st.write("**Verbs:**", st.session_state.extracted_pos.get("verbs", []))
st.write("**Adjectives:**", st.session_state.extracted_pos.get("adjectives", []))
st.write("**Nouns:**", st.session_state.extracted_pos.get("nouns", []))
st.write("**Pronouns:**", st.session_state.extracted_pos.get("pronouns", []))
# Collect annotation inputs for each word
if st.session_state.words:
for i, word in enumerate(st.session_state.words):
st.write(f"Annotate the word: {word}")
st.session_state.labels[i] = st.selectbox(
f"Label for '{word}'", ["", "Verb", "Adj", "Noun", "Pronoun"],
key=f"label_{i}", index=["", "Verb", "Adj", "Noun", "Pronoun"].index(st.session_state.labels[i])
)
st.session_state.colors[i] = st.color_picker(
f"Color for '{word}'",
value=st.session_state.colors[i],
key=f"color_{i}"
)
# Generate button to process the annotations
if st.button("Generate Annotated Text", type="primary"):
annotated_elements = []
for i, word in enumerate(st.session_state.words):
if st.session_state.labels[i] and st.session_state.colors[i] != "#FFFFFF":
annotated_elements.append((word, st.session_state.labels[i], st.session_state.colors[i]))
else:
annotated_elements.append(word)
annotated_elements.append(" ") # Add space between words
# Remove the last extra space added
if annotated_elements and annotated_elements[-1] == " ":
annotated_elements.pop()
# Display the annotated text using the `annotated_text` function
st.subheader("Annotated Text:")
annotated_text(*annotated_elements)
# Print the code for the annotated text
st.subheader("Generated Code:")
code_str = 'annotated_text(\n'
for elem in annotated_elements:
if isinstance(elem, tuple):
code_str += f' ("{elem[0]}", "{elem[1]}", "{elem[2]}"),\n'
else:
code_str += f' "{elem}",\n'
code_str += ')'
st.code(code_str, language='python')