Spaces:
Sleeping
Sleeping
#------------------------------------------------------------------------ | |
# Import Modules | |
#------------------------------------------------------------------------ | |
import streamlit as st | |
import spacy | |
import string | |
from annotated_text import annotated_text | |
from PIL import Image | |
spacy.cli.download("en_core_web_sm") # Download and install the model | |
# Load the English NLP model | |
nlp = spacy.load("en_core_web_sm") | |
#------------------------------------------------------------------------ | |
# Configurations | |
#------------------------------------------------------------------------ | |
# Streamlit page setup | |
# icon = Image.open("MTSS.ai_Icon.png") | |
icon = Image.open("MTSS.ai_Icon.png") | |
st.set_page_config( | |
page_title="Kaleidoscope | Text Annotation", | |
page_icon=icon, | |
layout="centered", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'About': "### *This application was created by* \n### LeVesseur Ph.D | MTSS.ai" | |
} | |
) | |
#------------------------------------------------------------------------ | |
# Header | |
#------------------------------------------------------------------------ | |
# st.image('MTSS.ai_Logo.png', width=300) | |
st.title('MTSS:grey[.ai]') | |
st.header('Kaleidoscope:grey[ | Parts of Speech Annotation]') | |
#------------------------------------------------------------------------ | |
# Sidebar | |
#------------------------------------------------------------------------ | |
contact = st.sidebar.toggle('Handmade by \n**LeVesseur** :grey[ PhD] \n| :grey[MTSS.ai]') | |
if contact: | |
st.sidebar.write('Inquiries: [[email protected]](mailto:[email protected]) \nProfile: [levesseur.com](http://levesseur.com) \nCheck out: [InkQA | Dynamic PDFs](http://www.inkqa.com)') | |
# Color options | |
colors = { | |
"Green (DAF1E7)": "#DAF1E7", | |
"Blue (BDE5FF)": "#BDE5FF", | |
"Navy (D1DBE9)": "#D1DBE9", | |
"Teal (D6EAED)": "#D6EAED", | |
"Iceburg (E4EEF6)": "#E4EEF6", | |
"Vermillion (F6DCDD)": "#F6DCDD", | |
} | |
with st.sidebar: | |
st.divider() | |
# Sidebar display (Option 1: Color blocks with hex) | |
st.sidebar.header("Recommended Colors") | |
for color_name, hex_code in colors.items(): | |
st.sidebar.color_picker(color_name, hex_code) | |
st.subheader("Example") | |
annotated_text( | |
("I", "Pronoun", "#F6DCDD"), | |
" ", | |
"really", | |
" ", | |
("appreciate", "Verb", "#DAF1E7"), | |
" ", | |
("all", "Pronoun", "#F6DCDD"), | |
" ", | |
("that", "Pronoun", "#F6DCDD"), | |
" ", | |
"the", | |
" ", | |
("social", "Adj", "#BDE5FF"), | |
" ", | |
"committee", | |
" ", | |
"has", | |
" ", | |
("done", "Verb", "#DAF1E7"), | |
" ", | |
"to", | |
" ", | |
("keep", "Verb", "#DAF1E7"), | |
" ", | |
("us", "Pronoun", "#F6DCDD"), | |
" ", | |
("feeling", "Verb", "#DAF1E7"), | |
" ", | |
("connected", "Adj", "#BDE5FF"), | |
" ", | |
".", | |
" ", | |
"I", | |
" ", | |
"also", | |
" ", | |
"really", | |
" ", | |
("value", "Verb", "#DAF1E7"), | |
" ", | |
("our", "Pronoun", "#F6DCDD"), | |
" ", | |
"in", | |
" ", | |
"-person", | |
" ", | |
("meetings", "Noun", "#D1DBE9"), | |
" ", | |
"and", | |
" ", | |
"the", | |
" ", | |
"social", | |
" ", | |
("opportunities", "Noun", "#D1DBE9"), | |
" ", | |
("built", "Verb", "#DAF1E7"), | |
" ", | |
"into", | |
" ", | |
"these", | |
" ", | |
"meetings", | |
" ", | |
".", | |
) | |
st.divider() | |
st.subheader("Directions for Using the Text Annotation Tool") | |
directions = """ | |
1. **Enter Your Text**: | |
- Type the text you want to annotate in the text area provided. | |
2. **Select Parts of Speech**: | |
- Choose which parts of speech you want to include in the annotation by checking the corresponding boxes (e.g., Verbs, Adjectives, Nouns, Pronouns). | |
3. **Submit Your Text**: | |
- Click the "Submit Text" button to process your input. The app will automatically label and color the words based on the selected parts of speech. | |
4. **Review the Annotations**: | |
- The annotated text will be displayed, showing the parts of speech labels and colors applied to the words. | |
5. **Adjust Annotations (Optional)**: | |
- You can manually adjust the labels and colors for each word if needed. | |
6. **Generate Annotated Text**: | |
- After reviewing and adjusting the annotations, click the "Generate Annotated Text" button. | |
- The final annotated text will be displayed. | |
7. **Take a Screenshot**: | |
- To use the annotated text, take a screenshot of the displayed text. | |
8. **Adjust Text Width** (Optional): | |
- If you want to adjust the width of the sentences for a better screenshot, minimize or resize your browser window accordingly before taking the screenshot. | |
""" | |
st.markdown(directions) | |
#------------------------------------------------------------------------ | |
# Functions: Parts of Speech | |
#------------------------------------------------------------------------ | |
# # Function to split text into words | |
# def split_text(text): | |
# # Add a space before punctuation marks | |
# for char in string.punctuation: | |
# text = text.replace(char, f" {char}") | |
# return text.split() | |
# # Function to automatically label and color words based on parts of speech | |
# def auto_label_and_color_words(doc, words): | |
# labels = [""] * len(words) | |
# colors = ["#FFFFFF"] * len(words) | |
# word_positions = {i: word for i, word in enumerate(words)} | |
# for token in doc: | |
# # Match token with the words from the original text | |
# for index, word in word_positions.items(): | |
# if token.text == word: | |
# if token.pos_ == "VERB": | |
# labels[index] = "Verb" | |
# colors[index] = "#DAF1E7" | |
# elif token.pos_ == "ADJ": | |
# labels[index] = "Adj" | |
# colors[index] = "#BDE5FF" | |
# elif token.pos_ == "NOUN": | |
# labels[index] = "Noun" | |
# colors[index] = "#D1DBE9" | |
# elif token.pos_ == "PRON": | |
# labels[index] = "Pronoun" | |
# colors[index] = "#F6DCDD" | |
# break # Exit loop once the word is found and processed | |
# return labels, colors | |
# # Main Streamlit application | |
# st.title("Text Annotation Tool") | |
# # Initialize session state to store text and annotations | |
# if 'user_text' not in st.session_state: | |
# st.session_state.user_text = "" | |
# if 'words' not in st.session_state: | |
# st.session_state.words = [] | |
# if 'labels' not in st.session_state: | |
# st.session_state.labels = [] | |
# if 'colors' not in st.session_state: | |
# st.session_state.colors = [] | |
# if 'extracted_pos' not in st.session_state: | |
# st.session_state.extracted_pos = {} | |
# # User input for the text | |
# user_text = st.text_area("Enter the text you want to annotate:", value=st.session_state.user_text, height=100) | |
# # Button to process the text | |
# if st.button("Submit Text"): | |
# st.session_state.user_text = user_text | |
# st.session_state.words = split_text(user_text) | |
# # Process the text with spaCy | |
# doc = nlp(user_text) | |
# # Automatically label and color words based on parts of speech | |
# st.session_state.labels, st.session_state.colors = auto_label_and_color_words(doc, st.session_state.words) | |
# # Extract parts of speech | |
# st.session_state.extracted_pos = { | |
# "verbs": [token.text for token in doc if token.pos_ == "VERB"], | |
# "adjectives": [token.text for token in doc if token.pos_ == "ADJ"], | |
# "nouns": [token.text for token in doc if token.pos_ == "NOUN"], | |
# "pronouns": [token.text for token in doc if token.pos_ == "PRON"] | |
# } | |
# # Display extracted parts of speech | |
# if st.session_state.extracted_pos: | |
# st.subheader("Extracted Parts of Speech") | |
# st.write("**Verbs:**", st.session_state.extracted_pos.get("verbs", [])) | |
# st.write("**Adjectives:**", st.session_state.extracted_pos.get("adjectives", [])) | |
# st.write("**Nouns:**", st.session_state.extracted_pos.get("nouns", [])) | |
# st.write("**Pronouns:**", st.session_state.extracted_pos.get("pronouns", [])) | |
# # Collect annotation inputs for each word | |
# if st.session_state.words: | |
# for i, word in enumerate(st.session_state.words): | |
# st.write(f"Annotate the word: {word}") | |
# st.session_state.labels[i] = st.selectbox( | |
# f"Label for '{word}'", ["", "Verb", "Adj", "Noun", "Pronoun"], | |
# key=f"label_{i}", index=["", "Verb", "Adj", "Noun", "Pronoun"].index(st.session_state.labels[i]) | |
# ) | |
# st.session_state.colors[i] = st.color_picker( | |
# f"Color for '{word}'", | |
# value=st.session_state.colors[i], | |
# key=f"color_{i}" | |
# ) | |
# # Generate button to process the annotations | |
# if st.button("Generate Annotated Text"): | |
# annotated_elements = [] | |
# for i, word in enumerate(st.session_state.words): | |
# if st.session_state.labels[i] and st.session_state.colors[i] != "#FFFFFF": | |
# annotated_elements.append((word, st.session_state.labels[i], st.session_state.colors[i])) | |
# else: | |
# annotated_elements.append(word) | |
# annotated_elements.append(" ") # Add space between words | |
# # Remove the last extra space added | |
# if annotated_elements and annotated_elements[-1] == " ": | |
# annotated_elements.pop() | |
# # Display the annotated text using the `annotated_text` function | |
# st.subheader("Annotated Text:") | |
# annotated_text(*annotated_elements) | |
# # Print the code for the annotated text | |
# st.subheader("Generated Code:") | |
# code_str = 'annotated_text(\n' | |
# for elem in annotated_elements: | |
# if isinstance(elem, tuple): | |
# code_str += f' ("{elem[0]}", "{elem[1]}", "{elem[2]}"),\n' | |
# else: | |
# code_str += f' "{elem}",\n' | |
# code_str += ')' | |
# st.code(code_str, language='python') | |
#------------------------------------------------------------------------ | |
# Functions: Parts of Speech + Buttons | |
#------------------------------------------------------------------------ | |
# Function to split text into words | |
def split_text(text): | |
# Add a space before punctuation marks | |
for char in string.punctuation: | |
text = text.replace(char, f" {char}") | |
return text.split() | |
# Function to automatically label and color words based on parts of speech | |
def auto_label_and_color_words(doc, words, include_verbs, include_adjectives, include_nouns, include_pronouns): | |
labels = [""] * len(words) | |
colors = ["#FFFFFF"] * len(words) | |
word_positions = {i: word for i, word in enumerate(words)} | |
for token in doc: | |
# Match token with the words from the original text | |
for index, word in word_positions.items(): | |
if token.text == word: | |
if token.pos_ == "VERB" and include_verbs: | |
labels[index] = "Verb" | |
colors[index] = "#DAF1E7" | |
elif token.pos_ == "ADJ" and include_adjectives: | |
labels[index] = "Adj" | |
colors[index] = "#BDE5FF" | |
elif token.pos_ == "NOUN" and include_nouns: | |
labels[index] = "Noun" | |
colors[index] = "#D1DBE9" | |
elif token.pos_ == "PRON" and include_pronouns: | |
labels[index] = "Pronoun" | |
colors[index] = "#F6DCDD" | |
break # Exit loop once the word is found and processed | |
return labels, colors | |
# Initialize session state to store text and annotations | |
if 'user_text' not in st.session_state: | |
st.session_state.user_text = "" | |
if 'words' not in st.session_state: | |
st.session_state.words = [] | |
if 'labels' not in st.session_state: | |
st.session_state.labels = [] | |
if 'colors' not in st.session_state: | |
st.session_state.colors = [] | |
if 'extracted_pos' not in st.session_state: | |
st.session_state.extracted_pos = {} | |
# User input for the text | |
user_text = st.text_area("Enter the text you want to annotate:", value=st.session_state.user_text, height=100) | |
# Checkboxes for parts of speech to include | |
include_verbs = st.checkbox("Include Verbs", value=True) | |
include_adjectives = st.checkbox("Include Adjectives", value=True) | |
include_nouns = st.checkbox("Include Nouns", value=True) | |
include_pronouns = st.checkbox("Include Pronouns", value=True) | |
# Button to process the text | |
if st.button("Submit Text"): | |
st.session_state.user_text = user_text | |
st.session_state.words = split_text(user_text) | |
# Process the text with spaCy | |
doc = nlp(user_text) | |
# Automatically label and color words based on parts of speech | |
st.session_state.labels, st.session_state.colors = auto_label_and_color_words( | |
doc, st.session_state.words, include_verbs, include_adjectives, include_nouns, include_pronouns) | |
# Extract parts of speech | |
st.session_state.extracted_pos = { | |
"verbs": [token.text for token in doc if token.pos_ == "VERB"], | |
"adjectives": [token.text for token in doc if token.pos_ == "ADJ"], | |
"nouns": [token.text for token in doc if token.pos_ == "NOUN"], | |
"pronouns": [token.text for token in doc if token.pos_ == "PRON"] | |
} | |
# Display extracted parts of speech | |
if st.session_state.extracted_pos: | |
st.subheader("Extracted Parts of Speech") | |
st.write("**Verbs:**", st.session_state.extracted_pos.get("verbs", [])) | |
st.write("**Adjectives:**", st.session_state.extracted_pos.get("adjectives", [])) | |
st.write("**Nouns:**", st.session_state.extracted_pos.get("nouns", [])) | |
st.write("**Pronouns:**", st.session_state.extracted_pos.get("pronouns", [])) | |
# Collect annotation inputs for each word | |
if st.session_state.words: | |
for i, word in enumerate(st.session_state.words): | |
st.write(f"Annotate the word: {word}") | |
st.session_state.labels[i] = st.selectbox( | |
f"Label for '{word}'", ["", "Verb", "Adj", "Noun", "Pronoun"], | |
key=f"label_{i}", index=["", "Verb", "Adj", "Noun", "Pronoun"].index(st.session_state.labels[i]) | |
) | |
st.session_state.colors[i] = st.color_picker( | |
f"Color for '{word}'", | |
value=st.session_state.colors[i], | |
key=f"color_{i}" | |
) | |
# Generate button to process the annotations | |
if st.button("Generate Annotated Text", type="primary"): | |
annotated_elements = [] | |
for i, word in enumerate(st.session_state.words): | |
if st.session_state.labels[i] and st.session_state.colors[i] != "#FFFFFF": | |
annotated_elements.append((word, st.session_state.labels[i], st.session_state.colors[i])) | |
else: | |
annotated_elements.append(word) | |
annotated_elements.append(" ") # Add space between words | |
# Remove the last extra space added | |
if annotated_elements and annotated_elements[-1] == " ": | |
annotated_elements.pop() | |
# Display the annotated text using the `annotated_text` function | |
st.subheader("Annotated Text:") | |
annotated_text(*annotated_elements) | |
# Print the code for the annotated text | |
st.subheader("Generated Code:") | |
code_str = 'annotated_text(\n' | |
for elem in annotated_elements: | |
if isinstance(elem, tuple): | |
code_str += f' ("{elem[0]}", "{elem[1]}", "{elem[2]}"),\n' | |
else: | |
code_str += f' "{elem}",\n' | |
code_str += ')' | |
st.code(code_str, language='python') |