import pandas as pd import os import re from huggingface_hub import InferenceClient class DataProcessor: INTERVENTION_COLUMN = 'Did the intervention happen today?' ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)' PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)' NOT_ENGAGED_STR = 'Not Engaged (less than 50%)' def __init__(self): self.hf_api_key = os.getenv('HF_API_KEY') if not self.hf_api_key: raise ValueError("HF_API_KEY not set in environment variables") self.client = InferenceClient(api_key=self.hf_api_key) def read_excel(self, uploaded_file): return pd.read_excel(uploaded_file) def format_session_data(self, df): df['Date of Session'] = self.safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y') df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p') df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p') df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p') df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]] return df def safe_convert_to_time(self, series, format_str='%I:%M %p'): try: converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce') if format_str: return converted.dt.strftime(format_str) return converted except Exception as e: print(f"Error converting series to time: {e}") return series def safe_convert_to_datetime(self, series, format_str=None): try: converted = pd.to_datetime(series, errors='coerce') if format_str: return converted.dt.strftime(format_str) return converted except Exception as e: print(f"Error converting series to datetime: {e}") return series def replace_student_names_with_initials(self, df): updated_columns = [] for col in df.columns: if col.startswith('Student Attendance'): match = re.match(r'Student Attendance \[(.+?)\]', col) if match: name = match.group(1) name_parts = name.split() if len(name_parts) == 1: initials = name_parts[0][0] else: initials = ''.join([part[0] for part in name_parts]) updated_columns.append(f'Student Attendance [{initials}]') else: updated_columns.append(col) else: updated_columns.append(col) df.columns = updated_columns return df def compute_intervention_statistics(self, df): total_days = len(df) sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum() sessions_not_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum() intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0 intervention_frequency = round(intervention_frequency, 0) stats = { 'Intervention Frequency (%)': [intervention_frequency], 'Intervention Sessions Held': [sessions_held], 'Intervention Sessions Not Held': [sessions_not_held], 'Total Number of Days Available': [total_days] } return pd.DataFrame(stats) def compute_student_metrics(self, df): intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes'] intervention_sessions_held = len(intervention_df) student_columns = [col for col in df.columns if col.startswith('Student Attendance')] student_metrics = {} for col in student_columns: student_name = col.replace('Student Attendance [', '').replace(']', '').strip() student_data = intervention_df[[col]].copy() student_data[col] = student_data[col].fillna('Absent') attendance_values = student_data[col].apply(lambda x: 1 if x in [ self.ENGAGED_STR, self.PARTIALLY_ENGAGED_STR, self.NOT_ENGAGED_STR ] else 0) sessions_attended = attendance_values.sum() attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0 attendance_pct = round(attendance_pct) engagement_counts = { 'Engaged': 0, 'Partially Engaged': 0, 'Not Engaged': 0, 'Absent': 0 } for x in student_data[col]: if x == self.ENGAGED_STR: engagement_counts['Engaged'] += 1 elif x == self.PARTIALLY_ENGAGED_STR: engagement_counts['Partially Engaged'] += 1 elif x == self.NOT_ENGAGED_STR: engagement_counts['Not Engaged'] += 1 else: engagement_counts['Absent'] += 1 total_sessions = sum(engagement_counts.values()) engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0 engagement_pct = round(engagement_pct) student_metrics[student_name] = { 'Attendance (%)': attendance_pct, 'Attendance #': sessions_attended, 'Engagement (%)': engagement_pct } return pd.DataFrame.from_dict(student_metrics, orient='index').reset_index().rename(columns={'index': 'Student'}) def compute_average_metrics(self, student_metrics_df): attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() return round(attendance_avg_stats), round(engagement_avg_stats)