Update main.py
Browse files
main.py
CHANGED
@@ -1,3 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
from app_config import AppConfig # Import the configurations class
|
@@ -71,44 +239,44 @@ def main():
|
|
71 |
start_date = pd.to_datetime(start_date).date()
|
72 |
end_date = pd.to_datetime(end_date).date()
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
st.subheader("Uploaded Data")
|
79 |
st.write(df)
|
80 |
|
81 |
-
# Ensure
|
82 |
-
|
83 |
-
|
|
|
84 |
return
|
85 |
|
86 |
-
|
87 |
-
#MOVE
|
88 |
# Compute Intervention Session Statistics
|
89 |
intervention_stats = data_processor.compute_intervention_statistics(df)
|
90 |
st.subheader("Intervention Dosage")
|
91 |
st.write(intervention_stats)
|
92 |
|
93 |
-
# Plot and download intervention statistics
|
94 |
-
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
95 |
-
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
96 |
-
|
97 |
# Plot and download intervention statistics: Two-column layout for the visualization and intervention frequency
|
98 |
col1, col2 = st.columns([3, 1]) # Set the column width ratio
|
99 |
-
|
100 |
with col1:
|
101 |
intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
102 |
-
|
103 |
with col2:
|
104 |
intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0]
|
105 |
-
# Display the "Intervention
|
106 |
st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True)
|
107 |
# Display the frequency value below it
|
108 |
st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)
|
109 |
|
110 |
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
111 |
-
|
112 |
# Compute Student Metrics
|
113 |
student_metrics_df = data_processor.compute_student_metrics(df)
|
114 |
st.subheader("Student Attendance and Engagement")
|
@@ -127,23 +295,18 @@ def main():
|
|
127 |
)
|
128 |
st.subheader("Student Evaluations")
|
129 |
st.write(student_metrics_df[['Student', 'Evaluation']])
|
130 |
-
|
131 |
-
# # Build and display decision tree diagrams for each student
|
132 |
-
# for index, row in student_metrics_df.iterrows():
|
133 |
-
# tree_diagram = visualization.build_tree_diagram(row)
|
134 |
-
# st.graphviz_chart(tree_diagram.source)
|
135 |
|
136 |
# Build and display decision tree diagrams for each student
|
137 |
for index, row in student_metrics_df.iterrows():
|
138 |
tree_diagram = visualization.build_tree_diagram(row)
|
139 |
-
|
140 |
# Get the student's name from the DataFrame
|
141 |
student_name = row['Student']
|
142 |
-
|
143 |
# Use st.expander to wrap the graphviz chart with the student's name
|
144 |
with st.expander(f"{student_name} Decision Tree", expanded=False):
|
145 |
st.graphviz_chart(tree_diagram.source)
|
146 |
-
|
147 |
# Prepare input for the language model
|
148 |
llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
149 |
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pandas as pd
|
3 |
+
# from app_config import AppConfig # Import the configurations class
|
4 |
+
# from data_processor import DataProcessor # Import the data analysis class
|
5 |
+
# from visualization import Visualization # Import the data viz class
|
6 |
+
# from ai_analysis import AIAnalysis # Import the ai analysis class
|
7 |
+
# from sidebar import Sidebar # Import the Sidebar class
|
8 |
+
|
9 |
+
|
10 |
+
# def main():
|
11 |
+
# # Initialize the app configuration
|
12 |
+
# app_config = AppConfig()
|
13 |
+
|
14 |
+
# # Initialize the sidebar
|
15 |
+
# sidebar = Sidebar()
|
16 |
+
# sidebar.display()
|
17 |
+
|
18 |
+
# # Initialize the data processor
|
19 |
+
# data_processor = DataProcessor()
|
20 |
+
|
21 |
+
# # Initialize the visualization handler
|
22 |
+
# visualization = Visualization()
|
23 |
+
|
24 |
+
# # Initialize the AI analysis handler
|
25 |
+
# ai_analysis = AIAnalysis(data_processor.client)
|
26 |
+
|
27 |
+
# st.title("Literacy Implementation Record Data Analysis")
|
28 |
+
|
29 |
+
# # Add the descriptive text
|
30 |
+
# st.markdown("""
|
31 |
+
# This tool summarizes implementation record data for student attendance, engagement, and intervention dosage to address hypothesis #1: Have Students Received Adequate Instruction?
|
32 |
+
# """)
|
33 |
+
|
34 |
+
# # Date selection option
|
35 |
+
# date_option = st.radio(
|
36 |
+
# "Select data range:",
|
37 |
+
# ("All Data", "Date Range")
|
38 |
+
# )
|
39 |
+
|
40 |
+
# # Initialize start and end date variables
|
41 |
+
# start_date = None
|
42 |
+
# end_date = None
|
43 |
+
|
44 |
+
# if date_option == "Date Range":
|
45 |
+
# # Prompt user to enter start and end dates
|
46 |
+
# start_date = st.date_input("Start Date")
|
47 |
+
# end_date = st.date_input("End Date")
|
48 |
+
|
49 |
+
# # Ensure start date is before end date
|
50 |
+
# if start_date > end_date:
|
51 |
+
# st.error("Start date must be before end date.")
|
52 |
+
# return
|
53 |
+
|
54 |
+
# # File uploader
|
55 |
+
# uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
|
56 |
+
|
57 |
+
# if uploaded_file is not None:
|
58 |
+
# try:
|
59 |
+
# # Read the Excel file into a DataFrame
|
60 |
+
# df = data_processor.read_excel(uploaded_file)
|
61 |
+
|
62 |
+
# # Format the session data
|
63 |
+
# df = data_processor.format_session_data(df)
|
64 |
+
|
65 |
+
# # Replace student names with initials
|
66 |
+
# df = data_processor.replace_student_names_with_initials(df)
|
67 |
+
|
68 |
+
# # Filter data if date range is selected
|
69 |
+
# if date_option == "Date Range":
|
70 |
+
# # Convert start_date and end_date to datetime
|
71 |
+
# start_date = pd.to_datetime(start_date).date()
|
72 |
+
# end_date = pd.to_datetime(end_date).date()
|
73 |
+
|
74 |
+
# # Filter the DataFrame based on the selected date range
|
75 |
+
# df = df[(df['Date of Session'] >= start_date) & (df['Date of Session'] <= end_date)]
|
76 |
+
|
77 |
+
|
78 |
+
# st.subheader("Uploaded Data")
|
79 |
+
# st.write(df)
|
80 |
+
|
81 |
+
# # Ensure expected column is available
|
82 |
+
# if DataProcessor.INTERVENTION_COLUMN not in df.columns:
|
83 |
+
# st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
|
84 |
+
# return
|
85 |
+
|
86 |
+
|
87 |
+
# #MOVE
|
88 |
+
# # Compute Intervention Session Statistics
|
89 |
+
# intervention_stats = data_processor.compute_intervention_statistics(df)
|
90 |
+
# st.subheader("Intervention Dosage")
|
91 |
+
# st.write(intervention_stats)
|
92 |
+
|
93 |
+
# # Plot and download intervention statistics
|
94 |
+
# # intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
95 |
+
# # visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
96 |
+
|
97 |
+
# # Plot and download intervention statistics: Two-column layout for the visualization and intervention frequency
|
98 |
+
# col1, col2 = st.columns([3, 1]) # Set the column width ratio
|
99 |
+
|
100 |
+
# with col1:
|
101 |
+
# intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
102 |
+
|
103 |
+
# with col2:
|
104 |
+
# intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0]
|
105 |
+
# # Display the "Intervention Frequency (%)" text
|
106 |
+
# st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True)
|
107 |
+
# # Display the frequency value below it
|
108 |
+
# st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)
|
109 |
+
|
110 |
+
# visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
111 |
+
|
112 |
+
# # Compute Student Metrics
|
113 |
+
# student_metrics_df = data_processor.compute_student_metrics(df)
|
114 |
+
# st.subheader("Student Attendance and Engagement")
|
115 |
+
# st.write(student_metrics_df)
|
116 |
+
|
117 |
+
# # Compute Student Metric Averages
|
118 |
+
# attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
119 |
+
|
120 |
+
# # Plot and download student metrics
|
121 |
+
# student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
122 |
+
# visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
123 |
+
|
124 |
+
# # Evaluate each student and build decision tree diagrams
|
125 |
+
# student_metrics_df['Evaluation'] = student_metrics_df.apply(
|
126 |
+
# lambda row: data_processor.evaluate_student(row), axis=1
|
127 |
+
# )
|
128 |
+
# st.subheader("Student Evaluations")
|
129 |
+
# st.write(student_metrics_df[['Student', 'Evaluation']])
|
130 |
+
|
131 |
+
# # # Build and display decision tree diagrams for each student
|
132 |
+
# # for index, row in student_metrics_df.iterrows():
|
133 |
+
# # tree_diagram = visualization.build_tree_diagram(row)
|
134 |
+
# # st.graphviz_chart(tree_diagram.source)
|
135 |
+
|
136 |
+
# # Build and display decision tree diagrams for each student
|
137 |
+
# for index, row in student_metrics_df.iterrows():
|
138 |
+
# tree_diagram = visualization.build_tree_diagram(row)
|
139 |
+
|
140 |
+
# # Get the student's name from the DataFrame
|
141 |
+
# student_name = row['Student']
|
142 |
+
|
143 |
+
# # Use st.expander to wrap the graphviz chart with the student's name
|
144 |
+
# with st.expander(f"{student_name} Decision Tree", expanded=False):
|
145 |
+
# st.graphviz_chart(tree_diagram.source)
|
146 |
+
|
147 |
+
# # Prepare input for the language model
|
148 |
+
# llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
149 |
+
|
150 |
+
# # Generate Notes and Recommendations using Hugging Face LLM
|
151 |
+
# with st.spinner("Generating AI analysis..."):
|
152 |
+
# recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
|
153 |
+
|
154 |
+
# st.subheader("AI Analysis")
|
155 |
+
# st.markdown(recommendations)
|
156 |
+
|
157 |
+
# # Download AI output
|
158 |
+
# ai_analysis.download_llm_output(recommendations, "llm_output.txt")
|
159 |
+
|
160 |
+
# except Exception as e:
|
161 |
+
# st.error(f"Error processing the file: {str(e)}")
|
162 |
+
|
163 |
+
# if __name__ == '__main__':
|
164 |
+
# main()
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
import streamlit as st
|
170 |
import pandas as pd
|
171 |
from app_config import AppConfig # Import the configurations class
|
|
|
239 |
start_date = pd.to_datetime(start_date).date()
|
240 |
end_date = pd.to_datetime(end_date).date()
|
241 |
|
242 |
+
# Identify the date column
|
243 |
+
date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
|
244 |
+
if date_column:
|
245 |
+
# Filter the DataFrame based on the selected date range
|
246 |
+
df = df[(df[date_column] >= start_date) & (df[date_column] <= end_date)]
|
247 |
+
else:
|
248 |
+
st.error("Date column not found in the data.")
|
249 |
+
return
|
250 |
|
251 |
st.subheader("Uploaded Data")
|
252 |
st.write(df)
|
253 |
|
254 |
+
# Ensure the intervention column is determined
|
255 |
+
intervention_column = data_processor.get_intervention_column(df)
|
256 |
+
if intervention_column not in df.columns:
|
257 |
+
st.error(f"Expected column '{intervention_column}' not found.")
|
258 |
return
|
259 |
|
|
|
|
|
260 |
# Compute Intervention Session Statistics
|
261 |
intervention_stats = data_processor.compute_intervention_statistics(df)
|
262 |
st.subheader("Intervention Dosage")
|
263 |
st.write(intervention_stats)
|
264 |
|
|
|
|
|
|
|
|
|
265 |
# Plot and download intervention statistics: Two-column layout for the visualization and intervention frequency
|
266 |
col1, col2 = st.columns([3, 1]) # Set the column width ratio
|
267 |
+
|
268 |
with col1:
|
269 |
intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
270 |
+
|
271 |
with col2:
|
272 |
intervention_frequency = intervention_stats['Intervention Dosage (%)'].values[0]
|
273 |
+
# Display the "Intervention Dosage (%)" text
|
274 |
st.markdown("<h3 style='color: #358E66;'>Intervention Dosage</h3>", unsafe_allow_html=True)
|
275 |
# Display the frequency value below it
|
276 |
st.markdown(f"<h1 style='color: #358E66;'>{intervention_frequency}%</h1>", unsafe_allow_html=True)
|
277 |
|
278 |
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
279 |
+
|
280 |
# Compute Student Metrics
|
281 |
student_metrics_df = data_processor.compute_student_metrics(df)
|
282 |
st.subheader("Student Attendance and Engagement")
|
|
|
295 |
)
|
296 |
st.subheader("Student Evaluations")
|
297 |
st.write(student_metrics_df[['Student', 'Evaluation']])
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
# Build and display decision tree diagrams for each student
|
300 |
for index, row in student_metrics_df.iterrows():
|
301 |
tree_diagram = visualization.build_tree_diagram(row)
|
302 |
+
|
303 |
# Get the student's name from the DataFrame
|
304 |
student_name = row['Student']
|
305 |
+
|
306 |
# Use st.expander to wrap the graphviz chart with the student's name
|
307 |
with st.expander(f"{student_name} Decision Tree", expanded=False):
|
308 |
st.graphviz_chart(tree_diagram.source)
|
309 |
+
|
310 |
# Prepare input for the language model
|
311 |
llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
312 |
|