Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForSequenceToSequence, AutoTokenizer | |
| from PIL import Image | |
| from torchvision import transforms | |
| # Load the Text-to-Image model | |
| image_model = AutoModelForSequenceToSequence.from_pretrained("artificialguybr/CuteCartoonRedmond-V2") | |
| image_tokenizer = AutoTokenizer.from_pretrained("artificialguybr/CuteCartoonRedmond-V2") | |
| # Load the Text Generation model | |
| text_model = AutoModelForSequenceToSequence.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
| text_tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
| # Define a function to generate an image from text | |
| def generate_image(text): | |
| inputs = image_tokenizer(text, return_tensors="pt") | |
| output = image_model.generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]) | |
| image = Image.fromarray(output[0].detach().numpy()) | |
| return image | |
| # Define a function to generate text from text | |
| def generate_text(text): | |
| inputs = text_tokenizer(text, return_tensors="pt") | |
| output = text_model.generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]) | |
| return text_tokenizer.decode(output[0], skip_special_tokens=True) | |
| # Create a Gradio interface | |
| demo = gr.Interface( | |
| fn=lambda text: {"image": generate_image(text), "text": generate_text(text)}, | |
| inputs="text", | |
| outputs=["image", "text"], | |
| title="Text-to-Image and Text Generation", | |
| description="Enter a prompt to generate both an image and text!" | |
| ) | |
| # Launch the Gradio app | |
| demo.launch() |