File size: 4,297 Bytes
a67dc80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import xml.etree.ElementTree as ET
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Dict, Any
from collections import defaultdict
from accelerate import Accelerator

class DynamicModel(nn.Module):
    def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
        super(DynamicModel, self).__init__()
        self.sections = nn.ModuleDict()

        for section_name, layers in sections.items():
            self.sections[section_name] = nn.ModuleList()
            for layer_params in layers:
                self.sections[section_name].append(self.create_layer(layer_params))

    def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
        layer = nn.Linear(layer_params['input_size'], layer_params['output_size'])
        activation = layer_params.get('activation', 'relu')
        if activation == 'relu':
            return nn.Sequential(layer, nn.ReLU())
        elif activation == 'tanh':
            return nn.Sequential(layer, nn.Tanh())
        elif activation == 'sigmoid':
            return nn.Sequential(layer, nn.Sigmoid())
        else:
            return layer

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        for section_name, layers in self.sections.items():
            for layer in layers:
                x = layer(x)
        return x

def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
    tree = ET.parse(file_path)
    root = tree.getroot()

    layers = []
    for prov in root.findall('.//prov'):
        layer_params = {
            'input_size': 128,  # Example: fixed input size
            'output_size': 256,  # Example: fixed output size
            'activation': 'relu'  # Default activation
        }
        layers.append(layer_params)

    return layers

def create_model_from_folder(folder_path: str) -> DynamicModel:
    sections = defaultdict(list)

    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if file.endswith('.xml'):
                file_path = os.path.join(root, file)
                try:
                    layers = parse_xml_file(file_path)
                    section_name = os.path.basename(root)
                    sections[section_name].extend(layers)
                except Exception as e:
                    print(f"Error processing {file_path}: {str(e)}")

    return DynamicModel(sections)

def main():
    folder_path = 'Xml_Data'
    model = create_model_from_folder(folder_path)

    print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")

    # Get first section's first layer's input size dynamically
    first_section = list(model.sections.keys())[0]
    first_layer = model.sections[first_section][0]
    input_features = first_layer[0].in_features
    
    # Create sample input tensor matching the model's expected input size
    sample_input = torch.randn(1, input_features)
    output = model(sample_input)
    print(f"Sample output shape: {output.shape}")

    # Initialize accelerator for distributed training
    accelerator = Accelerator()
    
    # Setup optimization components
    optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()
    num_epochs = 10

    # Create synthetic dataset for demonstration
    dataset = torch.utils.data.TensorDataset(
        torch.randn(100, input_features),
        torch.randint(0, 2, (100,))
    )
    train_dataloader = torch.utils.data.DataLoader(
        dataset, 
        batch_size=16, 
        shuffle=True
    )

    # Prepare for distributed training
    model, optimizer, train_dataloader = accelerator.prepare(
        model, 
        optimizer, 
        train_dataloader
    )

    # Training loop
    for epoch in range(num_epochs):
        model.train()
        total_loss = 0
        for batch_idx, (inputs, labels) in enumerate(train_dataloader):
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            accelerator.backward(loss)
            optimizer.step()
            total_loss += loss.item()
        
        avg_loss = total_loss / len(train_dataloader)
        print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")

if __name__ == "__main__":
    main()