File size: 8,978 Bytes
7998f26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import fastapi
from typing import Optional, Dict, Any
import copy
import requests
import json
import os
import sys
from io import StringIO
import ctypes
import subprocess
import logging
from pathlib import Path
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
import random
import time
import inspect
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("meetkai/functionary-small-v3.1", trust_remote_code=True)
model_path = AutoModelForCausalLM.from_pretrained("meetkai/functionary-small-v3.1", trust_remote_code=True)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class Tool(fastapi.FastAPI):
    def __init__(
            self,
            tool_name: str,
            description: str,
            name_for_human: Optional[str] = None,
            name_for_model: Optional[str] = None,
            description_for_human: Optional[str] = None,
            description_for_model: Optional[str] = None,
            logo_url: Optional[str] = None,
            author_github: Optional[str] = None,
            contact_email: str = "",
            legal_info_url: str = "",
            version: str = "0.1.0",
        ):
        super().__init__(
            title=tool_name,
            description=description,
            version=version,
        )

        if name_for_human is None:
            name_for_human = tool_name
        if name_for_model is None:
            name_for_model = name_for_human
        if description_for_human is None:
            description_for_human = description
        if description_for_model is None:
            description_for_model = description_for_human
        
        self.api_info = {
            "schema_version": "v1",
            "name_for_human": name_for_human,
            "name_for_model": name_for_model,
            "description_for_human": description_for_human,
            "description_for_model": description_for_model,
            "auth": {
                "type": "none",
            },
            "api": {
                "type": "openapi",
                "url": "/openapi.json",
                "is_user_authenticated": False,
            },
            "author_github": author_github,
            "logo_url": logo_url,
            "contact_email": contact_email,
            "legal_info_url": legal_info_url,
        }

        @self.get("/.well-known/ai-plugin.json", include_in_schema=False)
        def get_api_info(request: fastapi.Request):
            openapi_path = str(request.url).replace("/.well-known/ai-plugin.json", "/openapi.json")
            info = copy.deepcopy(self.api_info)
            info["api"]["url"] = str(openapi_path)
            return info

class SelfLearningTool:
    def __init__(self):
        self.tools = {}

    def add_tool(self, name: str, func: callable):
        self.tools[name] = func

    def use_tool(self, name: str, *args, **kwargs):
        if name in self.tools:
            return self.tools[name](*args, **kwargs)
        else:
            return f"Tool '{name}' not found."

    def list_tools(self):
        return list(self.tools.keys())

    def remove_tool(self, name: str):
        if name in self.tools:
            del self.tools[name]
            return f"Tool '{name}' removed successfully."
        else:
            return f"Tool '{name}' not found."

class PythonREPL:
    def __init__(self):
        self.globals = {}
        self.locals = {}
        self.output_buffer = StringIO()
        self.self_learning_tool = SelfLearningTool()

    def run(self, command: str) -> str:
        old_stdout = sys.stdout
        sys.stdout = self.output_buffer
        try:
            exec(command, self.globals, self.locals)
            output = self.output_buffer.getvalue()
        except Exception as e:
            output = f"Error: {repr(e)}"
        finally:
            sys.stdout = old_stdout
            self.output_buffer.truncate(0)
            self.output_buffer.seek(0)
        return output

    def add_tool(self, name: str, func: callable):
        self.self_learning_tool.add_tool(name, func)

    def use_tool(self, name: str, *args, **kwargs):
        return self.self_learning_tool.use_tool(name, *args, **kwargs)

    def list_tools(self):
        return self.self_learning_tool.list_tools()

    def remove_tool(self, name: str):
        return self.self_learning_tool.remove_tool(name)

    def self_reflect(self):
        reflection = "Self-reflection:\n"
        reflection += f"Number of defined variables: {len(self.locals)}\n"
        reflection += f"Number of available tools: {len(self.list_tools())}\n"
        reflection += "Available tools:\n"
        for tool in self.list_tools():
            reflection += f"- {tool}\n"
        return reflection

    def self_inspect(self):
        inspection = "Self-inspection:\n"
        for name, value in self.locals.items():
            inspection += f"{name}: {type(value)}\n"
            if callable(value):
                try:
                    signature = inspect.signature(value)
                    inspection += f"  Signature: {signature}\n"
                except ValueError:
                    inspection += "  Signature: Unable to inspect\n"
        return inspection

def initialize_llm(model_path: str, n_ctx: int, n_threads: int = 4, n_batch: int = 512) -> Llama:
    try:
        return Llama(model_path=model_path, n_ctx=n_ctx, n_threads=n_threads, n_batch=n_batch, verbose=True)
    except Exception as e:
        logger.error(f"Failed to initialize LLM: {e}")
        raise

llm = initialize_llm('../models/lil.gguf', 4096)

def build_tool(config) -> Tool:
    tool = Tool(
        "Advanced Python REPL",
        "Execute sophisticated Python commands with self-learning capabilities",
        name_for_model="Advanced Python REPL",
        description_for_model=(
            "An advanced Python shell for executing complex Python commands. "
            "Input should be a valid Python command or script. "
            "Use print(...) to see the output of expressions. "
            "Capable of handling multi-line code, advanced Python features, "
            "and self-learning tools."
        ),
        logo_url="https://your-app-url.com/.well-known/logo.png",
        contact_email="[email protected]",
        legal_info_url="[email protected]"
    )
    
    python_repl = PythonREPL()
    
    def sanitize_input(query: str) -> str:
        return query.strip().strip("```").strip()

    @tool.get("/run_python")
    def run_python(query: str):
        sanitized_query = sanitize_input(query)
        result = python_repl.run(sanitized_query)
        return {"result": result, "execution_time": time.time()}
    
    @tool.get("/add_tool")
    def add_tool(name: str, code: str):
        sanitized_code = sanitize_input(code)
        try:
            exec(f"def {name}({sanitized_code})", python_repl.globals, python_repl.locals)
            python_repl.add_tool(name, python_repl.locals[name])
            return f"Tool '{name}' added successfully."
        except Exception as e:
            return f"Error adding tool: {str(e)}"

    @tool.get("/use_tool")
    def use_tool(name: str, args: str):
        try:
            result = python_repl.use_tool(name, *eval(args))
            return {"result": result}
        except Exception as e:
            return {"error": str(e)}

    @tool.get("/list_tools")
    def list_tools():
        return {"tools": python_repl.list_tools()}

    @tool.get("/remove_tool")
    def remove_tool(name: str):
        return {"result": python_repl.remove_tool(name)}

    @tool.get("/self_reflect")
    def self_reflect():
        return {"reflection": python_repl.self_reflect()}

    @tool.get("/self_inspect")
    def self_inspect():
        return {"inspection": python_repl.self_inspect()}

    @tool.get("/write_file")
    def write_file(file_path: str, text: str) -> str:
        write_path = Path(file_path)
        try:
            write_path.parent.mkdir(exist_ok=True, parents=False)
            with write_path.open("w", encoding="utf-8") as f:
                f.write(text)
            return f"File written successfully to {file_path}."
        except Exception as e:
            return "Error: " + str(e)
        
    @tool.get("/read_file")
    def read_file(file_path: str) -> str:
        read_path = Path(file_path)
        try:
            with read_path.open("r", encoding="utf-8") as f:
                content = f.read()
            return content
        except Exception as e:
            return "Error: " + str(e)

    return tool

if __name__ == "__main__":
    config = {}  # Add any necessary configuration
    advanced_python_repl = build_tool(config)
    
    # Run the FastAPI server
    import uvicorn
    uvicorn.run(advanced_python_repl, host="0.0.0.0", port=8000)