Spaces:
Sleeping
Sleeping
Prathmesh48
commited on
Commit
•
5c5c323
1
Parent(s):
9ba9756
Update embedding.py
Browse files- embedding.py +424 -424
embedding.py
CHANGED
@@ -1,425 +1,425 @@
|
|
1 |
-
from PyPDF2 import PdfReader
|
2 |
-
import requests
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
import concurrent.futures
|
6 |
-
import random
|
7 |
-
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
-
from langchain_community.document_loaders import WebBaseLoader
|
9 |
-
from langchain_community.document_loaders import PyPDFLoader
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
import google.generativeai as genai
|
12 |
-
from langchain_core.messages import HumanMessage
|
13 |
-
from io import BytesIO
|
14 |
-
import numpy as np
|
15 |
-
import re
|
16 |
-
import torch
|
17 |
-
from transformers import AutoTokenizer, AutoModel
|
18 |
-
import numpy as np
|
19 |
-
import onnxruntime as ort
|
20 |
-
# import torch._dynamo
|
21 |
-
import time
|
22 |
-
# torch._dynamo.config.suppress_errors = True
|
23 |
-
|
24 |
-
from search import search_images
|
25 |
-
|
26 |
-
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
|
27 |
-
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
|
28 |
-
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
|
29 |
-
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
|
30 |
-
|
31 |
-
vision = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
|
32 |
-
vision1 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
|
33 |
-
vision2 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
|
34 |
-
vision3 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
|
35 |
-
|
36 |
-
tokenizer = AutoTokenizer.from_pretrained('dwzhu/e5-base-4k',trust_remote_code = True)
|
37 |
-
# model = AutoModel.from_pretrained('dwzhu/e5-base-4k',trust_remote_code = True)
|
38 |
-
model_path = "model_opt2_QInt8.onnx"
|
39 |
-
|
40 |
-
session = ort.InferenceSession(model_path)
|
41 |
-
# model = torch.compile(model)
|
42 |
-
# model.to('cpu') # Ensure the model is on the CPU
|
43 |
-
|
44 |
-
from transformers import PreTrainedTokenizerFast
|
45 |
-
|
46 |
-
class TokenBasedTextSplitter:
|
47 |
-
def __init__(self, tokenizer_path='tokenizer.json', chunk_size=2000, chunk_overlap=50):
|
48 |
-
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_path)
|
49 |
-
self.chunk_size = chunk_size
|
50 |
-
self.chunk_overlap = chunk_overlap
|
51 |
-
|
52 |
-
def split_text(self, text):
|
53 |
-
tokens = self.tokenizer.tokenize(text)
|
54 |
-
chunks = []
|
55 |
-
|
56 |
-
for i in range(0, len(tokens), self.chunk_size - self.chunk_overlap):
|
57 |
-
chunk = tokens[i:i + self.chunk_size]
|
58 |
-
chunks.append(self.tokenizer.convert_tokens_to_string(chunk))
|
59 |
-
|
60 |
-
return chunks
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
genai.configure(api_key="AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI")
|
65 |
-
|
66 |
-
def pdf_extractor(link):
|
67 |
-
text = ''
|
68 |
-
|
69 |
-
try:
|
70 |
-
# Fetch the PDF file from the URL
|
71 |
-
response = requests.get(link)
|
72 |
-
response.raise_for_status() # Raise an error for bad status codes
|
73 |
-
|
74 |
-
# Use BytesIO to handle the PDF content in memory
|
75 |
-
pdf_file = BytesIO(response.content)
|
76 |
-
|
77 |
-
# Load the PDF file
|
78 |
-
reader = PdfReader(pdf_file)
|
79 |
-
for page in reader.pages:
|
80 |
-
text += page.extract_text() # Extract text from each page
|
81 |
-
|
82 |
-
except requests.exceptions.HTTPError as e:
|
83 |
-
print(f'HTTP error occurred: {e}')
|
84 |
-
except Exception as e:
|
85 |
-
print(f'An error occurred: {e}')
|
86 |
-
|
87 |
-
return text
|
88 |
-
|
89 |
-
def web_extractor(link):
|
90 |
-
text = ''
|
91 |
-
|
92 |
-
try:
|
93 |
-
loader = WebBaseLoader(link)
|
94 |
-
pages = loader.load_and_split()
|
95 |
-
|
96 |
-
for page in pages:
|
97 |
-
text+=page.page_content
|
98 |
-
except:
|
99 |
-
pass
|
100 |
-
|
101 |
-
return text
|
102 |
-
|
103 |
-
def imporve_text(text):
|
104 |
-
|
105 |
-
prompt = f'''
|
106 |
-
Please rewrite the following text to make it short, descriptive, concise, and of high quality.
|
107 |
-
Ensure that all essential information is retained.
|
108 |
-
Focus on improving clarity, coherence, and word choice without altering the original meaning.
|
109 |
-
|
110 |
-
text = {text}
|
111 |
-
'''
|
112 |
-
|
113 |
-
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
114 |
-
result = model.invoke(prompt)
|
115 |
-
|
116 |
-
return result.content
|
117 |
-
|
118 |
-
def feature_extraction(tag, history , context):
|
119 |
-
|
120 |
-
prompt = f'''
|
121 |
-
You are an intelligent assistant tasked with updating product information. You have two data sources:
|
122 |
-
1. Tag_History: Previously gathered information about the product.
|
123 |
-
2. Tag_Context: New data that might contain additional details.
|
124 |
-
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD.
|
125 |
-
Guidelines:
|
126 |
-
- Only add new details that are relevant to the {tag} FIELD.
|
127 |
-
- Do not add or modify any other fields in the Tag_History.
|
128 |
-
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information.
|
129 |
-
Here is the data:
|
130 |
-
Tag_Context: {str(context)}
|
131 |
-
Tag_History: {history}
|
132 |
-
Respond with the updated Tag_History.
|
133 |
-
'''
|
134 |
-
|
135 |
-
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
136 |
-
result = model.invoke(prompt)
|
137 |
-
|
138 |
-
return result.content
|
139 |
-
|
140 |
-
def feature_extraction_image(url):
|
141 |
-
text = ' '
|
142 |
-
model = genai.GenerativeModel('gemini-1.5-flash-001')
|
143 |
-
try:
|
144 |
-
res = model.generate_content(['Describe this image to me',url])
|
145 |
-
text = res.text
|
146 |
-
|
147 |
-
except:
|
148 |
-
pass
|
149 |
-
return text
|
150 |
-
|
151 |
-
def detailed_feature_extraction(find, context):
|
152 |
-
|
153 |
-
prompt = f'''
|
154 |
-
You are an intelligent assistant tasked with finding product information. You have one data source and one output format:
|
155 |
-
1. Context: The gathered information about the product.
|
156 |
-
2. Format: Details which need to be filled based on Context.
|
157 |
-
Your job is to read the Context and update the relevant field in Format using Context.
|
158 |
-
Guidelines:
|
159 |
-
- Only add details that are relevant to the individual FIELD.
|
160 |
-
- Do not add or modify any other fields in the Format.
|
161 |
-
- If nothing found return None.
|
162 |
-
Here is the data:
|
163 |
-
The Context is {str(context)}
|
164 |
-
The Format is {str(find)}
|
165 |
-
'''
|
166 |
-
|
167 |
-
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
168 |
-
result = model.invoke(prompt)
|
169 |
-
|
170 |
-
return result.content
|
171 |
-
|
172 |
-
def detailed_history(history):
|
173 |
-
|
174 |
-
details = {
|
175 |
-
"Introduction": {
|
176 |
-
"Product Name": None,
|
177 |
-
"Overview of the product": None,
|
178 |
-
"Purpose of the manual": None,
|
179 |
-
"Audience": None,
|
180 |
-
"Additional Details": None
|
181 |
-
},
|
182 |
-
"Specifications": {
|
183 |
-
"Technical specifications": None,
|
184 |
-
"Performance metrics": None,
|
185 |
-
"Additional Details": None
|
186 |
-
},
|
187 |
-
"Product Overview": {
|
188 |
-
"Product features": None,
|
189 |
-
"Key components and parts": None,
|
190 |
-
"Additional Details": None
|
191 |
-
},
|
192 |
-
"Safety Information": {
|
193 |
-
"Safety warnings and precautions": None,
|
194 |
-
"Compliance and certification information": None,
|
195 |
-
"Additional Details": None
|
196 |
-
},
|
197 |
-
"Installation Instructions": {
|
198 |
-
"Unboxing and inventory checklist": None,
|
199 |
-
"Step-by-step installation guide": None,
|
200 |
-
"Required tools and materials": None,
|
201 |
-
"Additional Details": None
|
202 |
-
},
|
203 |
-
"Setup and Configuration": {
|
204 |
-
"Initial setup procedures": None,
|
205 |
-
"Configuration settings": None,
|
206 |
-
"Troubleshooting setup issues": None,
|
207 |
-
"Additional Details": None
|
208 |
-
},
|
209 |
-
"Operation Instructions": {
|
210 |
-
"How to use the product": None,
|
211 |
-
"Detailed instructions for different functionalities": None,
|
212 |
-
"User interface guide": None,
|
213 |
-
"Additional Details": None
|
214 |
-
},
|
215 |
-
"Maintenance and Care": {
|
216 |
-
"Cleaning instructions": None,
|
217 |
-
"Maintenance schedule": None,
|
218 |
-
"Replacement parts and accessories": None,
|
219 |
-
"Additional Details": None
|
220 |
-
},
|
221 |
-
"Troubleshooting": {
|
222 |
-
"Common issues and solutions": None,
|
223 |
-
"Error messages and their meanings": None,
|
224 |
-
"Support Information": None,
|
225 |
-
"Additional Details": None
|
226 |
-
},
|
227 |
-
"Warranty Information": {
|
228 |
-
"Terms and Conditions": None,
|
229 |
-
"Service and repair information": None,
|
230 |
-
"Additional Details": None
|
231 |
-
},
|
232 |
-
"Legal Information": {
|
233 |
-
"Copyright information": None,
|
234 |
-
"Trademarks and patents": None,
|
235 |
-
"Disclaimers": None,
|
236 |
-
"Additional Details": None
|
237 |
-
|
238 |
-
}
|
239 |
-
}
|
240 |
-
|
241 |
-
for key,val in history.items():
|
242 |
-
|
243 |
-
find = details[key]
|
244 |
-
|
245 |
-
details[key] = str(detailed_feature_extraction(find,val))
|
246 |
-
|
247 |
-
return details
|
248 |
-
|
249 |
-
|
250 |
-
def get_embeddings(link,tag_option):
|
251 |
-
|
252 |
-
print(f"\n--> Creating Embeddings - {link}")
|
253 |
-
|
254 |
-
if tag_option=='Complete Document Similarity':
|
255 |
-
history = { "Details": "" }
|
256 |
-
|
257 |
-
else:
|
258 |
-
history = {
|
259 |
-
"Introduction": "",
|
260 |
-
"Specifications": "",
|
261 |
-
"Product Overview": "",
|
262 |
-
"Safety Information": "",
|
263 |
-
"Installation Instructions": "",
|
264 |
-
"Setup and Configuration": "",
|
265 |
-
"Operation Instructions": "",
|
266 |
-
"Maintenance and Care": "",
|
267 |
-
"Troubleshooting": "",
|
268 |
-
"Warranty Information": "",
|
269 |
-
"Legal Information": ""
|
270 |
-
}
|
271 |
-
|
272 |
-
# Extract Text -----------------------------
|
273 |
-
print("Extracting Text")
|
274 |
-
if link[-3:] == '.md' or link[8:11] == 'en.':
|
275 |
-
text = web_extractor(link)
|
276 |
-
else:
|
277 |
-
text = pdf_extractor(link)
|
278 |
-
|
279 |
-
# Create Chunks ----------------------------
|
280 |
-
print("Writing Tag Data")
|
281 |
-
|
282 |
-
|
283 |
-
if tag_option=="Complete Document Similarity":
|
284 |
-
history["Details"] = feature_extraction("Details", history["Details"], text[0][:50000])
|
285 |
-
|
286 |
-
else:
|
287 |
-
chunks = text_splitter.create_documents(text)
|
288 |
-
|
289 |
-
for chunk in chunks:
|
290 |
-
|
291 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
292 |
-
future_to_key = {
|
293 |
-
executor.submit(
|
294 |
-
feature_extraction, f"Product {key}", history[key], chunk.page_content
|
295 |
-
): key for key in history
|
296 |
-
}
|
297 |
-
for future in concurrent.futures.as_completed(future_to_key):
|
298 |
-
key = future_to_key[future]
|
299 |
-
try:
|
300 |
-
response = future.result()
|
301 |
-
history[key] = response
|
302 |
-
except Exception as e:
|
303 |
-
print(f"Error processing {key}: {e}")
|
304 |
-
|
305 |
-
print("Creating Vectors")
|
306 |
-
genai_embeddings=[]
|
307 |
-
|
308 |
-
for tag in history:
|
309 |
-
result = genai.embed_content(
|
310 |
-
model="models/embedding-001",
|
311 |
-
content=history[tag],
|
312 |
-
task_type="retrieval_document")
|
313 |
-
genai_embeddings.append(result['embedding'])
|
314 |
-
|
315 |
-
|
316 |
-
return history,genai_embeddings
|
317 |
-
|
318 |
-
def get_embed_chroma(link):
|
319 |
-
|
320 |
-
print(f"\n--> Creating Embeddings - {link}")
|
321 |
-
|
322 |
-
# Extract Text -----------------------------
|
323 |
-
if link[-3:] == '.md' or link[8:11] == 'en.':
|
324 |
-
text = web_extractor(link)
|
325 |
-
else:
|
326 |
-
text = pdf_extractor(link)
|
327 |
-
print("\u2713 Extracting Text")
|
328 |
-
|
329 |
-
# Create Chunks ----------------------------
|
330 |
-
|
331 |
-
text = re.sub(r'\.{2,}', '.', text)
|
332 |
-
text = re.sub(r'\s{2,}', ' ', text)
|
333 |
-
text = re.sub(r'\d{7,}', '', text)
|
334 |
-
|
335 |
-
text = re.sub(r'\n{2,}', '\n', text)
|
336 |
-
|
337 |
-
|
338 |
-
chunks = text_splitter_small.split_text(text)
|
339 |
-
# print(chunks[:2])
|
340 |
-
print("\u2713 Writing Tag Data")
|
341 |
-
|
342 |
-
# Creating Vector
|
343 |
-
embedding_vectors=[]
|
344 |
-
# textual_data = []
|
345 |
-
print("\u2713 Creating Vectors")
|
346 |
-
|
347 |
-
|
348 |
-
# batch_size = 1
|
349 |
-
# # Process chunks in batches
|
350 |
-
# for i in range(0, len(chunks), batch_size):
|
351 |
-
# batch = chunks[i:i + batch_size]
|
352 |
-
|
353 |
-
# # texts = [text for text in batch]
|
354 |
-
# # print(texts)
|
355 |
-
|
356 |
-
t1 = time.time()
|
357 |
-
for chunk in chunks:
|
358 |
-
# Tokenize the input text
|
359 |
-
inputs = tokenizer(chunk, return_tensors="np", padding=True, truncation=True)
|
360 |
-
|
361 |
-
# Convert inputs to int64
|
362 |
-
input_ids = inputs['input_ids'].astype(np.int64)
|
363 |
-
attention_mask = inputs['attention_mask'].astype(np.int64)
|
364 |
-
token_type_ids = inputs.get('token_type_ids', np.zeros_like(input_ids)).astype(np.int64) # Some models might not use token_type_ids
|
365 |
-
|
366 |
-
# Create the input feed dictionary
|
367 |
-
input_feed = {
|
368 |
-
'input_ids': input_ids,
|
369 |
-
'attention_mask': attention_mask,
|
370 |
-
'token_type_ids': token_type_ids
|
371 |
-
}
|
372 |
-
|
373 |
-
# Get the model's outputs
|
374 |
-
outputs = session.run(None, input_feed)
|
375 |
-
|
376 |
-
# Convert the outputs to numpy and process as needed
|
377 |
-
last_hidden_state = np.array(outputs[0])
|
378 |
-
embeddings = last_hidden_state.mean(axis=1).tolist()
|
379 |
-
embedding_vectors.append(embeddings)
|
380 |
-
# textual_data.a(text)
|
381 |
-
|
382 |
-
t2 = time.time()
|
383 |
-
print(t2-t1)
|
384 |
-
return chunks ,
|
385 |
-
|
386 |
-
|
387 |
-
def get_image_embeddings(Product):
|
388 |
-
image_embeddings = []
|
389 |
-
|
390 |
-
links = search_images(Product)
|
391 |
-
with concurrent.futures.ThreadPoolExecutor() as executor:
|
392 |
-
descriptions = list(executor.map(feature_extraction_image, links))
|
393 |
-
|
394 |
-
for description in descriptions:
|
395 |
-
result = genai.embed_content(
|
396 |
-
model="models/embedding-001",
|
397 |
-
content=description,
|
398 |
-
task_type="retrieval_document")
|
399 |
-
|
400 |
-
image_embeddings.append(result['embedding'])
|
401 |
-
# print(image_embeddings)
|
402 |
-
return image_embeddings , links
|
403 |
-
|
404 |
-
global text_splitter
|
405 |
-
global data
|
406 |
-
global history
|
407 |
-
|
408 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
409 |
-
chunk_size = 10000,
|
410 |
-
chunk_overlap = 100,
|
411 |
-
separators = ["",''," "]
|
412 |
-
)
|
413 |
-
|
414 |
-
# text_splitter_small = RecursiveCharacterTextSplitter(
|
415 |
-
# chunk_size = 2000,
|
416 |
-
# chunk_overlap = 100,
|
417 |
-
# separators = ["",''," "]
|
418 |
-
# )
|
419 |
-
|
420 |
-
text_splitter_small = TokenBasedTextSplitter(chunk_size=500, chunk_overlap=50)
|
421 |
-
# chunks = splitter.split_text(text)
|
422 |
-
|
423 |
-
if __name__ == '__main__':
|
424 |
-
print(get_embed_chroma('https://www.galaxys24manual.com/wp-content/uploads/pdf/galaxy-s24-manual-SAM-S921-S926-S928-OS14-011824-FINAL-US-English.pdf'))
|
425 |
# print(get_image_embeddings(Product='Samsung Galaxy S24'))
|
|
|
1 |
+
from PyPDF2 import PdfReader
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import concurrent.futures
|
6 |
+
import random
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_community.document_loaders import WebBaseLoader
|
9 |
+
from langchain_community.document_loaders import PyPDFLoader
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
import google.generativeai as genai
|
12 |
+
from langchain_core.messages import HumanMessage
|
13 |
+
from io import BytesIO
|
14 |
+
import numpy as np
|
15 |
+
import re
|
16 |
+
import torch
|
17 |
+
from transformers import AutoTokenizer, AutoModel
|
18 |
+
import numpy as np
|
19 |
+
import onnxruntime as ort
|
20 |
+
# import torch._dynamo
|
21 |
+
import time
|
22 |
+
# torch._dynamo.config.suppress_errors = True
|
23 |
+
|
24 |
+
from search import search_images
|
25 |
+
|
26 |
+
gemini = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
|
27 |
+
gemini1 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
|
28 |
+
gemini2 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
|
29 |
+
gemini3 = ChatGoogleGenerativeAI(model="gemini-1.0-pro-001",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
|
30 |
+
|
31 |
+
vision = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyCo-TeDp0Ou--UwhlTgMwCoTEZxg6-v7wA',temperature = 0.1)
|
32 |
+
vision1 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI',temperature = 0.1)
|
33 |
+
vision2 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBzbZQBffHFK3N-gWnhDDNbQ9yZnZtaS2E',temperature = 0.1)
|
34 |
+
vision3 = ChatGoogleGenerativeAI(model="gemini-1.5-flash",google_api_key='AIzaSyBNN4VDMAOB2gSZha6HjsTuH71PVV69FLM',temperature = 0.1)
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained('dwzhu/e5-base-4k',trust_remote_code = True)
|
37 |
+
# model = AutoModel.from_pretrained('dwzhu/e5-base-4k',trust_remote_code = True)
|
38 |
+
model_path = "model_opt2_QInt8.onnx"
|
39 |
+
|
40 |
+
session = ort.InferenceSession(model_path)
|
41 |
+
# model = torch.compile(model)
|
42 |
+
# model.to('cpu') # Ensure the model is on the CPU
|
43 |
+
|
44 |
+
from transformers import PreTrainedTokenizerFast
|
45 |
+
|
46 |
+
class TokenBasedTextSplitter:
|
47 |
+
def __init__(self, tokenizer_path='tokenizer.json', chunk_size=2000, chunk_overlap=50):
|
48 |
+
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_path)
|
49 |
+
self.chunk_size = chunk_size
|
50 |
+
self.chunk_overlap = chunk_overlap
|
51 |
+
|
52 |
+
def split_text(self, text):
|
53 |
+
tokens = self.tokenizer.tokenize(text)
|
54 |
+
chunks = []
|
55 |
+
|
56 |
+
for i in range(0, len(tokens), self.chunk_size - self.chunk_overlap):
|
57 |
+
chunk = tokens[i:i + self.chunk_size]
|
58 |
+
chunks.append(self.tokenizer.convert_tokens_to_string(chunk))
|
59 |
+
|
60 |
+
return chunks
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
genai.configure(api_key="AIzaSyAtnUk8QKSUoJd3uOBpmeBNN-t8WXBt0zI")
|
65 |
+
|
66 |
+
def pdf_extractor(link):
|
67 |
+
text = ''
|
68 |
+
|
69 |
+
try:
|
70 |
+
# Fetch the PDF file from the URL
|
71 |
+
response = requests.get(link)
|
72 |
+
response.raise_for_status() # Raise an error for bad status codes
|
73 |
+
|
74 |
+
# Use BytesIO to handle the PDF content in memory
|
75 |
+
pdf_file = BytesIO(response.content)
|
76 |
+
|
77 |
+
# Load the PDF file
|
78 |
+
reader = PdfReader(pdf_file)
|
79 |
+
for page in reader.pages:
|
80 |
+
text += page.extract_text() # Extract text from each page
|
81 |
+
|
82 |
+
except requests.exceptions.HTTPError as e:
|
83 |
+
print(f'HTTP error occurred: {e}')
|
84 |
+
except Exception as e:
|
85 |
+
print(f'An error occurred: {e}')
|
86 |
+
|
87 |
+
return text
|
88 |
+
|
89 |
+
def web_extractor(link):
|
90 |
+
text = ''
|
91 |
+
|
92 |
+
try:
|
93 |
+
loader = WebBaseLoader(link)
|
94 |
+
pages = loader.load_and_split()
|
95 |
+
|
96 |
+
for page in pages:
|
97 |
+
text+=page.page_content
|
98 |
+
except:
|
99 |
+
pass
|
100 |
+
|
101 |
+
return text
|
102 |
+
|
103 |
+
def imporve_text(text):
|
104 |
+
|
105 |
+
prompt = f'''
|
106 |
+
Please rewrite the following text to make it short, descriptive, concise, and of high quality.
|
107 |
+
Ensure that all essential information is retained.
|
108 |
+
Focus on improving clarity, coherence, and word choice without altering the original meaning.
|
109 |
+
|
110 |
+
text = {text}
|
111 |
+
'''
|
112 |
+
|
113 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
114 |
+
result = model.invoke(prompt)
|
115 |
+
|
116 |
+
return result.content
|
117 |
+
|
118 |
+
def feature_extraction(tag, history , context):
|
119 |
+
|
120 |
+
prompt = f'''
|
121 |
+
You are an intelligent assistant tasked with updating product information. You have two data sources:
|
122 |
+
1. Tag_History: Previously gathered information about the product.
|
123 |
+
2. Tag_Context: New data that might contain additional details.
|
124 |
+
Your job is to read the Tag_Context and update the relevant field in the Tag_History with any new details found. The field to be updated is the {tag} FIELD.
|
125 |
+
Guidelines:
|
126 |
+
- Only add new details that are relevant to the {tag} FIELD.
|
127 |
+
- Do not add or modify any other fields in the Tag_History.
|
128 |
+
- Ensure your response is in coherent sentences, integrating the new details seamlessly into the existing information.
|
129 |
+
Here is the data:
|
130 |
+
Tag_Context: {str(context)}
|
131 |
+
Tag_History: {history}
|
132 |
+
Respond with the updated Tag_History.
|
133 |
+
'''
|
134 |
+
|
135 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
136 |
+
result = model.invoke(prompt)
|
137 |
+
|
138 |
+
return result.content
|
139 |
+
|
140 |
+
def feature_extraction_image(url):
|
141 |
+
text = ' '
|
142 |
+
model = genai.GenerativeModel('gemini-1.5-flash-001')
|
143 |
+
try:
|
144 |
+
res = model.generate_content(['Describe this image to me',url])
|
145 |
+
text = res.text
|
146 |
+
|
147 |
+
except:
|
148 |
+
pass
|
149 |
+
return text
|
150 |
+
|
151 |
+
def detailed_feature_extraction(find, context):
|
152 |
+
|
153 |
+
prompt = f'''
|
154 |
+
You are an intelligent assistant tasked with finding product information. You have one data source and one output format:
|
155 |
+
1. Context: The gathered information about the product.
|
156 |
+
2. Format: Details which need to be filled based on Context.
|
157 |
+
Your job is to read the Context and update the relevant field in Format using Context.
|
158 |
+
Guidelines:
|
159 |
+
- Only add details that are relevant to the individual FIELD.
|
160 |
+
- Do not add or modify any other fields in the Format.
|
161 |
+
- If nothing found return None.
|
162 |
+
Here is the data:
|
163 |
+
The Context is {str(context)}
|
164 |
+
The Format is {str(find)}
|
165 |
+
'''
|
166 |
+
|
167 |
+
model = random.choice([gemini,gemini1,gemini2,gemini3])
|
168 |
+
result = model.invoke(prompt)
|
169 |
+
|
170 |
+
return result.content
|
171 |
+
|
172 |
+
def detailed_history(history):
|
173 |
+
|
174 |
+
details = {
|
175 |
+
"Introduction": {
|
176 |
+
"Product Name": None,
|
177 |
+
"Overview of the product": None,
|
178 |
+
"Purpose of the manual": None,
|
179 |
+
"Audience": None,
|
180 |
+
"Additional Details": None
|
181 |
+
},
|
182 |
+
"Specifications": {
|
183 |
+
"Technical specifications": None,
|
184 |
+
"Performance metrics": None,
|
185 |
+
"Additional Details": None
|
186 |
+
},
|
187 |
+
"Product Overview": {
|
188 |
+
"Product features": None,
|
189 |
+
"Key components and parts": None,
|
190 |
+
"Additional Details": None
|
191 |
+
},
|
192 |
+
"Safety Information": {
|
193 |
+
"Safety warnings and precautions": None,
|
194 |
+
"Compliance and certification information": None,
|
195 |
+
"Additional Details": None
|
196 |
+
},
|
197 |
+
"Installation Instructions": {
|
198 |
+
"Unboxing and inventory checklist": None,
|
199 |
+
"Step-by-step installation guide": None,
|
200 |
+
"Required tools and materials": None,
|
201 |
+
"Additional Details": None
|
202 |
+
},
|
203 |
+
"Setup and Configuration": {
|
204 |
+
"Initial setup procedures": None,
|
205 |
+
"Configuration settings": None,
|
206 |
+
"Troubleshooting setup issues": None,
|
207 |
+
"Additional Details": None
|
208 |
+
},
|
209 |
+
"Operation Instructions": {
|
210 |
+
"How to use the product": None,
|
211 |
+
"Detailed instructions for different functionalities": None,
|
212 |
+
"User interface guide": None,
|
213 |
+
"Additional Details": None
|
214 |
+
},
|
215 |
+
"Maintenance and Care": {
|
216 |
+
"Cleaning instructions": None,
|
217 |
+
"Maintenance schedule": None,
|
218 |
+
"Replacement parts and accessories": None,
|
219 |
+
"Additional Details": None
|
220 |
+
},
|
221 |
+
"Troubleshooting": {
|
222 |
+
"Common issues and solutions": None,
|
223 |
+
"Error messages and their meanings": None,
|
224 |
+
"Support Information": None,
|
225 |
+
"Additional Details": None
|
226 |
+
},
|
227 |
+
"Warranty Information": {
|
228 |
+
"Terms and Conditions": None,
|
229 |
+
"Service and repair information": None,
|
230 |
+
"Additional Details": None
|
231 |
+
},
|
232 |
+
"Legal Information": {
|
233 |
+
"Copyright information": None,
|
234 |
+
"Trademarks and patents": None,
|
235 |
+
"Disclaimers": None,
|
236 |
+
"Additional Details": None
|
237 |
+
|
238 |
+
}
|
239 |
+
}
|
240 |
+
|
241 |
+
for key,val in history.items():
|
242 |
+
|
243 |
+
find = details[key]
|
244 |
+
|
245 |
+
details[key] = str(detailed_feature_extraction(find,val))
|
246 |
+
|
247 |
+
return details
|
248 |
+
|
249 |
+
|
250 |
+
def get_embeddings(link,tag_option):
|
251 |
+
|
252 |
+
print(f"\n--> Creating Embeddings - {link}")
|
253 |
+
|
254 |
+
if tag_option=='Complete Document Similarity':
|
255 |
+
history = { "Details": "" }
|
256 |
+
|
257 |
+
else:
|
258 |
+
history = {
|
259 |
+
"Introduction": "",
|
260 |
+
"Specifications": "",
|
261 |
+
"Product Overview": "",
|
262 |
+
"Safety Information": "",
|
263 |
+
"Installation Instructions": "",
|
264 |
+
"Setup and Configuration": "",
|
265 |
+
"Operation Instructions": "",
|
266 |
+
"Maintenance and Care": "",
|
267 |
+
"Troubleshooting": "",
|
268 |
+
"Warranty Information": "",
|
269 |
+
"Legal Information": ""
|
270 |
+
}
|
271 |
+
|
272 |
+
# Extract Text -----------------------------
|
273 |
+
print("Extracting Text")
|
274 |
+
if link[-3:] == '.md' or link[8:11] == 'en.':
|
275 |
+
text = web_extractor(link)
|
276 |
+
else:
|
277 |
+
text = pdf_extractor(link)
|
278 |
+
|
279 |
+
# Create Chunks ----------------------------
|
280 |
+
print("Writing Tag Data")
|
281 |
+
|
282 |
+
|
283 |
+
if tag_option=="Complete Document Similarity":
|
284 |
+
history["Details"] = feature_extraction("Details", history["Details"], text[0][:50000])
|
285 |
+
|
286 |
+
else:
|
287 |
+
chunks = text_splitter.create_documents(text)
|
288 |
+
|
289 |
+
for chunk in chunks:
|
290 |
+
|
291 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
292 |
+
future_to_key = {
|
293 |
+
executor.submit(
|
294 |
+
feature_extraction, f"Product {key}", history[key], chunk.page_content
|
295 |
+
): key for key in history
|
296 |
+
}
|
297 |
+
for future in concurrent.futures.as_completed(future_to_key):
|
298 |
+
key = future_to_key[future]
|
299 |
+
try:
|
300 |
+
response = future.result()
|
301 |
+
history[key] = response
|
302 |
+
except Exception as e:
|
303 |
+
print(f"Error processing {key}: {e}")
|
304 |
+
|
305 |
+
print("Creating Vectors")
|
306 |
+
genai_embeddings=[]
|
307 |
+
|
308 |
+
for tag in history:
|
309 |
+
result = genai.embed_content(
|
310 |
+
model="models/embedding-001",
|
311 |
+
content=history[tag],
|
312 |
+
task_type="retrieval_document")
|
313 |
+
genai_embeddings.append(result['embedding'])
|
314 |
+
|
315 |
+
|
316 |
+
return history,genai_embeddings
|
317 |
+
|
318 |
+
def get_embed_chroma(link):
|
319 |
+
|
320 |
+
print(f"\n--> Creating Embeddings - {link}")
|
321 |
+
|
322 |
+
# Extract Text -----------------------------
|
323 |
+
if link[-3:] == '.md' or link[8:11] == 'en.':
|
324 |
+
text = web_extractor(link)
|
325 |
+
else:
|
326 |
+
text = pdf_extractor(link)
|
327 |
+
print("\u2713 Extracting Text")
|
328 |
+
|
329 |
+
# Create Chunks ----------------------------
|
330 |
+
|
331 |
+
text = re.sub(r'\.{2,}', '.', text)
|
332 |
+
text = re.sub(r'\s{2,}', ' ', text)
|
333 |
+
text = re.sub(r'\d{7,}', '', text)
|
334 |
+
|
335 |
+
text = re.sub(r'\n{2,}', '\n', text)
|
336 |
+
|
337 |
+
|
338 |
+
chunks = text_splitter_small.split_text(text)
|
339 |
+
# print(chunks[:2])
|
340 |
+
print("\u2713 Writing Tag Data")
|
341 |
+
|
342 |
+
# Creating Vector
|
343 |
+
# embedding_vectors=[]
|
344 |
+
# textual_data = []
|
345 |
+
print("\u2713 Creating Vectors")
|
346 |
+
|
347 |
+
|
348 |
+
# batch_size = 1
|
349 |
+
# # Process chunks in batches
|
350 |
+
# for i in range(0, len(chunks), batch_size):
|
351 |
+
# batch = chunks[i:i + batch_size]
|
352 |
+
|
353 |
+
# # texts = [text for text in batch]
|
354 |
+
# # print(texts)
|
355 |
+
|
356 |
+
# t1 = time.time()
|
357 |
+
for chunk in chunks:
|
358 |
+
# Tokenize the input text
|
359 |
+
inputs = tokenizer(chunk, return_tensors="np", padding=True, truncation=True)
|
360 |
+
|
361 |
+
# Convert inputs to int64
|
362 |
+
input_ids = inputs['input_ids'].astype(np.int64)
|
363 |
+
attention_mask = inputs['attention_mask'].astype(np.int64)
|
364 |
+
token_type_ids = inputs.get('token_type_ids', np.zeros_like(input_ids)).astype(np.int64) # Some models might not use token_type_ids
|
365 |
+
|
366 |
+
# Create the input feed dictionary
|
367 |
+
input_feed = {
|
368 |
+
'input_ids': input_ids,
|
369 |
+
'attention_mask': attention_mask,
|
370 |
+
'token_type_ids': token_type_ids
|
371 |
+
}
|
372 |
+
|
373 |
+
# Get the model's outputs
|
374 |
+
outputs = session.run(None, input_feed)
|
375 |
+
|
376 |
+
# Convert the outputs to numpy and process as needed
|
377 |
+
last_hidden_state = np.array(outputs[0])
|
378 |
+
embeddings = last_hidden_state.mean(axis=1).tolist()
|
379 |
+
# embedding_vectors.append(embeddings)
|
380 |
+
# textual_data.a(text)
|
381 |
+
|
382 |
+
# t2 = time.time()
|
383 |
+
# print(t2-t1)
|
384 |
+
return chunks , embeddings
|
385 |
+
|
386 |
+
|
387 |
+
def get_image_embeddings(Product):
|
388 |
+
image_embeddings = []
|
389 |
+
|
390 |
+
links = search_images(Product)
|
391 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
392 |
+
descriptions = list(executor.map(feature_extraction_image, links))
|
393 |
+
|
394 |
+
for description in descriptions:
|
395 |
+
result = genai.embed_content(
|
396 |
+
model="models/embedding-001",
|
397 |
+
content=description,
|
398 |
+
task_type="retrieval_document")
|
399 |
+
|
400 |
+
image_embeddings.append(result['embedding'])
|
401 |
+
# print(image_embeddings)
|
402 |
+
return image_embeddings , links
|
403 |
+
|
404 |
+
global text_splitter
|
405 |
+
global data
|
406 |
+
global history
|
407 |
+
|
408 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
409 |
+
chunk_size = 10000,
|
410 |
+
chunk_overlap = 100,
|
411 |
+
separators = ["",''," "]
|
412 |
+
)
|
413 |
+
|
414 |
+
# text_splitter_small = RecursiveCharacterTextSplitter(
|
415 |
+
# chunk_size = 2000,
|
416 |
+
# chunk_overlap = 100,
|
417 |
+
# separators = ["",''," "]
|
418 |
+
# )
|
419 |
+
|
420 |
+
text_splitter_small = TokenBasedTextSplitter(chunk_size=500, chunk_overlap=50)
|
421 |
+
# chunks = splitter.split_text(text)
|
422 |
+
|
423 |
+
if __name__ == '__main__':
|
424 |
+
print(get_embed_chroma('https://www.galaxys24manual.com/wp-content/uploads/pdf/galaxy-s24-manual-SAM-S921-S926-S928-OS14-011824-FINAL-US-English.pdf'))
|
425 |
# print(get_image_embeddings(Product='Samsung Galaxy S24'))
|