File size: 7,665 Bytes
324113f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Library Imports
import requests
from bs4 import BeautifulSoup
from googlesearch import search
from duckduckgo_search import DDGS
import concurrent.futures
import re



# Search Functions -------------------------------------------------------------->

# Function to search DuckDuckGo
def search_duckduckgo(query):
    try:
        results = DDGS().text(f"{query} manual filetype:pdf", max_results=5)
        return [res['href'] for res in results]
    except:
        return []

# Function to search Google
def search_google(query):

    links = []
    try:
        api_key = 'AIzaSyDV_uJwrgNtawqtl6GDfeUj6NqO-H1tA4c'
        search_engine_id = 'c4ca951b9fc6949cb'
        
        url = f"https://www.googleapis.com/customsearch/v1"
        params = {
            "key": api_key,
            "cx": search_engine_id,
            "q": query + " manual filetype:pdf"
        }

        response = requests.get(url, params=params)
        results = response.json()

        for item in results.get('items', []):
            links.append(item['link'])
    except:
        pass
    
    try:
        extension = "ext:pdf"
        for result in search(query + " manual " + extension, num_results=5):
            if result.endswith('.pdf'):
                links.append(result)
    except:
        pass
    
    return links

# Function to search Internet Archive
def search_archive(query):

    try:
        url = "https://archive.org/advancedsearch.php"
        params = {
            'q': f'{query} manual',
            'fl[]': ['identifier', 'title', 'format'],
            'rows': 50,
            'page': 1,
            'output': 'json'
        }

        # Make the request
        response = requests.get(url, params=params)
        data = response.json()

        # Function to extract hyperlinks from a webpage
        def extract_hyperlinks(url):        
            # Send a GET request to the URL
            response = requests.get(url)
            
            # Check if the request was successful
            if response.status_code == 200:
                # Parse the HTML content of the page
                soup = BeautifulSoup(response.text, 'html.parser')
                
                # Find all <a> tags (hyperlinks)
                for link in soup.find_all('a', href=True):
                    href = link['href']
                    if href.endswith('.pdf'):
                        pdf_files.append(url+'/'+href)
                    if href.endswith('.iso'):
                        # If the link ends with .iso, follow the link and extract .pdf hyperlinks
                        extract_pdf_from_iso(url+'/'+href+'/')

        # Function to extract .pdf hyperlinks from an .iso file
        def extract_pdf_from_iso(iso_url):        
            # Send a GET request to the ISO URL
            iso_response = requests.get(iso_url)
            
            # Check if the request was successful
            if iso_response.status_code == 200:
                # Parse the HTML content of the ISO page
                iso_soup = BeautifulSoup(iso_response.text, 'html.parser')
                
                # Find all <a> tags (hyperlinks) in the ISO page
                for link in iso_soup.find_all('a', href=True):
                    href = link['href']
                    if href.endswith('.pdf'):
                        pdf_files.append('https:'+href)

        pdf_files = []

        def process_doc(doc):
            identifier = doc.get('identifier', 'N/A')
            # title = doc.get('title', 'N/A')
            # format = doc.get('format', 'N/A')
            pdf_link = f"https://archive.org/download/{identifier}"
            extract_hyperlinks(pdf_link)

        with concurrent.futures.ThreadPoolExecutor() as executor:
            futures = [executor.submit(process_doc, doc) for doc in data['response']['docs']]

            # Optionally, wait for all futures to complete and handle any exceptions
            for future in concurrent.futures.as_completed(futures):
                try:
                    future.result()  # This will raise an exception if the function call raised
                except Exception as exc:
                    print(f'Generated an exception: {exc}')


        return pdf_files
    
    except:
        return []

def search_github(query):

    try:
        # GitHub Search API endpoint
        url = f"https://api.github.com/search/code?q={query}+extension:md"

        headers = {
        'Authorization': 'Token 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'
        }

        # Make the request
        response = requests.get(url,headers=headers)
        data = response.json()
        links = [item['html_url'] for item in data['items']]

        return links
    
    except:
        return []

def search_wikipedia(product):

    api_url = "https://en.wikipedia.org/w/api.php"
    params = {
        "action": "opensearch",
        "search": product,
        "limit": 5,
        "namespace": 0,
        "format": "json"
    }
    
    try:
        response = requests.get(api_url, params=params)
        response.raise_for_status()  # Raise an HTTPError for bad responses (4xx and 5xx)
        data = response.json()
        
        if data and len(data) > 3 and len(data[3]) > 0:
            return data[3]  # The URL is in the fourth element of the response array
        else:
            return []
    
    except requests.RequestException as e:
        print(f"An error occurred: {e}")
        return []

# def search_all(product,num):

#     similar_products = extract_similar_products(product)[num]
    
#     # results = {
#     #         product : [{'duckduckgo': duckduckgo_search(product)},{'google': google_search(product)},{'github': github_search(product)},{'archive': archive_search(product)}]
#     #     }

#     results = {}
        
#     def search_product(p):
#             return {
#                 'product': p,
#                 'duckduckgo': duckduckgo_search(p),
#                 'google': google_search(p),
#                 'github': github_search(p),
#                 'archive': archive_search(p),
#                 'wikipedia': wikipedia_search(p)
#             }

#     with concurrent.futures.ThreadPoolExecutor() as executor:
#             future_to_product = {executor.submit(search_product, p): p for p in similar_products}
            
#             for future in concurrent.futures.as_completed(future_to_product):
#                 result = future.result()
#                 product = result['product']
#                 results[product] = [
#                     {'duckduckgo': result['duckduckgo']},
#                     {'google': result['google']},
#                     {'github': result['github']},
#                     {'archive': result['archive']},
#                     {'wikipedia': result['wikipedia']}
#                 ]
                
#     return results

def search_images(product):
    results = DDGS().images(f"{product}", max_results=5)
    # print(results)
    return [r['image'] for r in results]
    
    
# Similarity Check  -------------------------------------->

def extract_similar_products(query):
    print(f"\n--> Fetching similar items of - {query}")
    results = DDGS().chat(f'{query} Similar Products')

    pattern = r'^\d+\.\s(.+)$'
    matches = re.findall(pattern, results, re.MULTILINE)
    matches = [item.split(': ')[0] for item in matches]
    return matches