# file: app.py import gradio as gr import requests import json import concurrent.futures from concurrent.futures import ThreadPoolExecutor from langchain_community.document_loaders import PyPDFLoader from langdetect import detect_langs from PyPDF2 import PdfReader from io import BytesIO import logging from dotenv import load_dotenv import os load_dotenv() data = False seen = set() main_url = "https://similar-products-api.vercel.app/search/all" main_product = "Samsung Galaxy" API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl" headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_TOKEN')}"} logging.basicConfig(level=logging.INFO) def get_links(product): params = { "API_KEY": "12345", "product": f"{product}", } response = requests.get(main_url, params=params) if response.status_code == 200: results = response.json() return results else: return {} def language_preprocess(text): try: if detect_langs(text)[0].lang == 'en': return True return False except Exception as e: logging.error(f"Language detection error: {e}") return False def relevant(product, similar_product, content): try: payload = {"inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}'''} response = requests.post(API_URL, headers=headers, json=payload) output = response.json() return bool(output[0]['generated_text']) except Exception as e: logging.error(f"Relevance checking error: {e}") return False def download_pdf(url, timeout=10): try: response = requests.get(url, timeout=timeout) response.raise_for_status() return BytesIO(response.content) except requests.RequestException as e: logging.error(f"PDF download error: {e}") return None def extract_text_from_pages(pdf_file, pages): reader = PdfReader(pdf_file) extracted_text = "" try: for page_num in pages: if page_num < len(reader.pages): page = reader.pages[page_num] extracted_text += page.extract_text() + "\n" else: logging.warning(f"Page {page_num} does not exist in the document.") return extracted_text except Exception as e: logging.error(f"PDF text extraction error: {e}") return 'हे चालत नाही' def process_link(link, similar_product): if link in seen: return None seen.add(link) try: pdf_file = download_pdf(link) if pdf_file: text = extract_text_from_pages(pdf_file, [0, 2, 4]) if language_preprocess(text): if relevant(main_product, similar_product, text): return link except Exception as e: logging.error(f"Error processing link: {e}") return None def filtering(urls, similar_product): res = [] with ThreadPoolExecutor() as executor: futures = {executor.submit(process_link, link, similar_product): link for link in urls} for future in concurrent.futures.as_completed(futures): result = future.result() if result is not None: res.append(result) return res def wikipedia_url(product): api_url = "https://en.wikipedia.org/w/api.php" params = { "action": "opensearch", "search": product, "limit": 5, "namespace": 0, "format": "json" } try: response = requests.get(api_url, params=params) response.raise_for_status() data = response.json() if data and len(data) > 3 and len(data[3]) > 0: return data[3] else: return [] except requests.RequestException as e: logging.error(f"Error fetching Wikipedia URLs: {e}") return [] def preprocess_initial(product): return get_links(product) def preprocess_filter(product, data): for similar_product in data: if similar_product != product: if list(data[similar_product][0])[0] == 'duckduckgo': s = set(('duckduckgo', 'google', 'archive')) temp = [] for idx, item in enumerate(data[similar_product]): if list(item)[0] in s: urls = data[similar_product][idx][list(item)[0]] temp += filtering(urls, similar_product) else: temp += data[similar_product][idx][list(item)[0]] data[similar_product] = temp data[similar_product] += wikipedia_url(similar_product) else: urls = data[similar_product] data[similar_product] = filtering(urls, similar_product) data[similar_product] += wikipedia_url(similar_product) logging.info('Filtering completed') return data def main(product_name): return preprocess_initial(product_name) def filter_links(product_name, initial_data): return preprocess_filter(product_name, initial_data) with gr.Blocks() as demo: product_name = gr.Textbox(label="Product Name") get_links_btn = gr.Button("Get Links") initial_links_output = gr.JSON() filter_btn = gr.Button("Filter Links") filtered_links_output = gr.JSON() get_links_btn.click(fn=main, inputs=product_name, outputs=initial_links_output) filter_btn.click(fn=filter_links, inputs=[product_name, initial_links_output], outputs=filtered_links_output) if __name__ == "__main__": demo.launch()