Spaces:
Sleeping
Sleeping
Prathmesh48
commited on
Commit
•
a4e40bd
1
Parent(s):
683da78
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# file: app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
import json
|
6 |
+
import concurrent.futures
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
+
from langchain_community.document_loaders import PyPDFLoader
|
9 |
+
from langdetect import detect_langs
|
10 |
+
from PyPDF2 import PdfReader
|
11 |
+
from io import BytesIO
|
12 |
+
import logging
|
13 |
+
from dotenv import load_dotenv
|
14 |
+
import os
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
data = False
|
18 |
+
seen = set()
|
19 |
+
|
20 |
+
main_url = "https://similar-products-api.vercel.app/search/all"
|
21 |
+
main_product = "Samsung Galaxy"
|
22 |
+
|
23 |
+
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
|
24 |
+
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_TOKEN')}"}
|
25 |
+
|
26 |
+
logging.basicConfig(level=logging.INFO)
|
27 |
+
|
28 |
+
def get_links(product):
|
29 |
+
params = {
|
30 |
+
"API_KEY": "12345",
|
31 |
+
"product": f"{product}",
|
32 |
+
}
|
33 |
+
response = requests.get(main_url, params=params)
|
34 |
+
if response.status_code == 200:
|
35 |
+
results = response.json()
|
36 |
+
return results
|
37 |
+
else:
|
38 |
+
return {}
|
39 |
+
|
40 |
+
def language_preprocess(text):
|
41 |
+
try:
|
42 |
+
if detect_langs(text)[0].lang == 'en':
|
43 |
+
return True
|
44 |
+
return False
|
45 |
+
except Exception as e:
|
46 |
+
logging.error(f"Language detection error: {e}")
|
47 |
+
return False
|
48 |
+
|
49 |
+
def relevant(product, similar_product, content):
|
50 |
+
try:
|
51 |
+
payload = {"inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False \nContent for similar product: {content}'''}
|
52 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
53 |
+
output = response.json()
|
54 |
+
return bool(output[0]['generated_text'])
|
55 |
+
except Exception as e:
|
56 |
+
logging.error(f"Relevance checking error: {e}")
|
57 |
+
return False
|
58 |
+
|
59 |
+
def download_pdf(url, timeout=10):
|
60 |
+
try:
|
61 |
+
response = requests.get(url, timeout=timeout)
|
62 |
+
response.raise_for_status()
|
63 |
+
return BytesIO(response.content)
|
64 |
+
except requests.RequestException as e:
|
65 |
+
logging.error(f"PDF download error: {e}")
|
66 |
+
return None
|
67 |
+
|
68 |
+
def extract_text_from_pages(pdf_file, pages):
|
69 |
+
reader = PdfReader(pdf_file)
|
70 |
+
extracted_text = ""
|
71 |
+
try:
|
72 |
+
for page_num in pages:
|
73 |
+
if page_num < len(reader.pages):
|
74 |
+
page = reader.pages[page_num]
|
75 |
+
extracted_text += page.extract_text() + "\n"
|
76 |
+
else:
|
77 |
+
logging.warning(f"Page {page_num} does not exist in the document.")
|
78 |
+
return extracted_text
|
79 |
+
except Exception as e:
|
80 |
+
logging.error(f"PDF text extraction error: {e}")
|
81 |
+
return 'हे चालत नाही'
|
82 |
+
|
83 |
+
def process_link(link, similar_product):
|
84 |
+
if link in seen:
|
85 |
+
return None
|
86 |
+
seen.add(link)
|
87 |
+
try:
|
88 |
+
pdf_file = download_pdf(link)
|
89 |
+
if pdf_file:
|
90 |
+
text = extract_text_from_pages(pdf_file, [0, 2, 4])
|
91 |
+
if language_preprocess(text):
|
92 |
+
if relevant(main_product, similar_product, text):
|
93 |
+
return link
|
94 |
+
except Exception as e:
|
95 |
+
logging.error(f"Error processing link: {e}")
|
96 |
+
return None
|
97 |
+
|
98 |
+
def filtering(urls, similar_product):
|
99 |
+
res = []
|
100 |
+
with ThreadPoolExecutor() as executor:
|
101 |
+
futures = {executor.submit(process_link, link, similar_product): link for link in urls}
|
102 |
+
for future in concurrent.futures.as_completed(futures):
|
103 |
+
result = future.result()
|
104 |
+
if result is not None:
|
105 |
+
res.append(result)
|
106 |
+
return res
|
107 |
+
|
108 |
+
def wikipedia_url(product):
|
109 |
+
api_url = "https://en.wikipedia.org/w/api.php"
|
110 |
+
params = {
|
111 |
+
"action": "opensearch",
|
112 |
+
"search": product,
|
113 |
+
"limit": 5,
|
114 |
+
"namespace": 0,
|
115 |
+
"format": "json"
|
116 |
+
}
|
117 |
+
try:
|
118 |
+
response = requests.get(api_url, params=params)
|
119 |
+
response.raise_for_status()
|
120 |
+
data = response.json()
|
121 |
+
if data and len(data) > 3 and len(data[3]) > 0:
|
122 |
+
return data[3]
|
123 |
+
else:
|
124 |
+
return []
|
125 |
+
except requests.RequestException as e:
|
126 |
+
logging.error(f"Error fetching Wikipedia URLs: {e}")
|
127 |
+
return []
|
128 |
+
|
129 |
+
def preprocess_initial(product):
|
130 |
+
return get_links(product)
|
131 |
+
|
132 |
+
def preprocess_filter(product, data):
|
133 |
+
for similar_product in data:
|
134 |
+
if similar_product != product:
|
135 |
+
if list(data[similar_product][0])[0] == 'duckduckgo':
|
136 |
+
s = set(('duckduckgo', 'google', 'archive'))
|
137 |
+
temp = []
|
138 |
+
|
139 |
+
for idx, item in enumerate(data[similar_product]):
|
140 |
+
if list(item)[0] in s:
|
141 |
+
urls = data[similar_product][idx][list(item)[0]]
|
142 |
+
temp += filtering(urls, similar_product)
|
143 |
+
else:
|
144 |
+
temp += data[similar_product][idx][list(item)[0]]
|
145 |
+
|
146 |
+
data[similar_product] = temp
|
147 |
+
data[similar_product] += wikipedia_url(similar_product)
|
148 |
+
else:
|
149 |
+
urls = data[similar_product]
|
150 |
+
data[similar_product] = filtering(urls, similar_product)
|
151 |
+
data[similar_product] += wikipedia_url(similar_product)
|
152 |
+
logging.info('Filtering completed')
|
153 |
+
return data
|
154 |
+
|
155 |
+
def main(product_name):
|
156 |
+
return preprocess_initial(product_name)
|
157 |
+
|
158 |
+
def filter_links(product_name, initial_data):
|
159 |
+
return preprocess_filter(product_name, initial_data)
|
160 |
+
|
161 |
+
with gr.Blocks() as demo:
|
162 |
+
product_name = gr.Textbox(label="Product Name")
|
163 |
+
get_links_btn = gr.Button("Get Links")
|
164 |
+
initial_links_output = gr.JSON()
|
165 |
+
filter_btn = gr.Button("Filter Links")
|
166 |
+
filtered_links_output = gr.JSON()
|
167 |
+
|
168 |
+
get_links_btn.click(fn=main, inputs=product_name, outputs=initial_links_output)
|
169 |
+
filter_btn.click(fn=filter_links, inputs=[product_name, initial_links_output], outputs=filtered_links_output)
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
demo.launch()
|