File size: 5,991 Bytes
73f4358
 
 
 
 
 
 
 
37ea6f0
73f4358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37ea6f0
73f4358
 
 
 
 
 
 
 
 
 
 
 
 
 
37ea6f0
 
 
 
 
 
 
 
 
 
 
 
 
73f4358
 
 
 
 
37ea6f0
 
 
 
 
 
 
 
 
 
 
73f4358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# file: app.py

import gradio as gr
import requests
import json
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.document_loaders import WebBaseLoader
from langdetect import detect_langs
from PyPDF2 import PdfReader
from io import BytesIO
import logging
from dotenv import load_dotenv
import os

load_dotenv()
data = False 
seen = set()

main_url = "https://similar-products-api.vercel.app/search/all"
main_product = "Samsung Galaxy"

API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-xxl"
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_TOKEN')}"}

logging.basicConfig(level=logging.INFO)

def get_links(product):
    params = {
        "API_KEY": "12345",
        "product": f"{product}",
    }
    response = requests.get(main_url, params=params)
    if response.status_code == 200:
        results = response.json()
        return results
    else:
        return {}

def language_preprocess(text):
    try:
        if detect_langs(text)[0].lang == 'en':
            return True
        return False
    except Exception as e:
        logging.error(f"Language detection error: {e}")
        return False

def relevant(product, similar_product, content):
    try:
        payload = {"inputs": f'''Do you think that the given content is similar to {similar_product} and {product}, just Respond True or False  \nContent for similar product:  {content[:700]}'''}
        response = requests.post(API_URL, headers=headers, json=payload)
        output = response.json()
        return bool(output[0]['generated_text'])
    except Exception as e:
        logging.error(f"Relevance checking error: {e}")
        return False

def download_pdf(url, timeout=10):
    try:
        response = requests.get(url, timeout=timeout)
        response.raise_for_status()
        return BytesIO(response.content)
    except requests.RequestException as e:
        logging.error(f"PDF download error: {e}")
        return None

def extract_text_from_pdf(pdf_file, pages):
    reader = PdfReader(pdf_file)
    extracted_text = ""
    try:
        for page_num in pages:
            if page_num < len(reader.pages):
                page = reader.pages[page_num]
                extracted_text += page.extract_text() + "\n"
            else:
                logging.warning(f"Page {page_num} does not exist in the document.")
        return extracted_text
    except Exception as e:
        logging.error(f"PDF text extraction error: {e}")
        return 'हे चालत नाही'

def extract_text_online(link):

    loader = WebBaseLoader(link)
    pages = loader.load_and_split()

    text = ''

    for page in pages[:3]:
        text+=page.page_content
    
    return text


def process_link(link, similar_product):
    if link in seen:
        return None
    seen.add(link)
    try:
        if link[-3:]=='.md':
            text = extract_text_online(link)
        else:
            pdf_file = download_pdf(link)
            text = extract_text_from_pdf(pdf_file, [0, 2, 4])

        if language_preprocess(text):
            if relevant(main_product, similar_product, text):
                return link
    except:
        pass
    return None

def filtering(urls, similar_product):
    res = []
    with ThreadPoolExecutor() as executor:
        futures = {executor.submit(process_link, link, similar_product): link for link in urls}
        for future in concurrent.futures.as_completed(futures):
            result = future.result()
            if result is not None:
                res.append(result)
    return res

def wikipedia_url(product):
    api_url = "https://en.wikipedia.org/w/api.php"
    params = {
        "action": "opensearch",
        "search": product,
        "limit": 5,
        "namespace": 0,
        "format": "json"
    }
    try:
        response = requests.get(api_url, params=params)
        response.raise_for_status()
        data = response.json()
        if data and len(data) > 3 and len(data[3]) > 0:
            return data[3]
        else:
            return []
    except requests.RequestException as e:
        logging.error(f"Error fetching Wikipedia URLs: {e}")
        return []

def preprocess_initial(product):
    return get_links(product)

def preprocess_filter(product, data):
    for similar_product in data:
        # if similar_product != product:
            if list(data[similar_product][0])[0] == 'duckduckgo':
                s = set(('duckduckgo', 'google', 'archive'))
                temp = []

                for idx, item in enumerate(data[similar_product]):
                    if list(item)[0] in s:
                        urls = data[similar_product][idx][list(item)[0]]
                        temp += filtering(urls, similar_product)
                    else:
                        temp += data[similar_product][idx][list(item)[0]]

                data[similar_product] = temp
                data[similar_product] += wikipedia_url(similar_product)
            else:
                urls = data[similar_product]
                data[similar_product] = filtering(urls, similar_product)
                data[similar_product] += wikipedia_url(similar_product)
    logging.info('Filtering completed')
    return data

def main(product_name):
    return preprocess_initial(product_name)

def filter_links(product_name, initial_data):
    return preprocess_filter(product_name, initial_data)

with gr.Blocks() as demo:
    product_name = gr.Textbox(label="Product Name")
    get_links_btn = gr.Button("Get Links")
    initial_links_output = gr.JSON()
    filter_btn = gr.Button("Filter Links")
    filtered_links_output = gr.JSON()

    get_links_btn.click(fn=main, inputs=product_name, outputs=initial_links_output)
    filter_btn.click(fn=filter_links, inputs=[product_name, initial_links_output], outputs=filtered_links_output)

if __name__ == "__main__":
    demo.launch()