Prat0 commited on
Commit
46c28f3
·
verified ·
1 Parent(s): 9439374

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -0
app.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import qdrant_client
4
+ from llama_index.core import Settings, VectorStoreIndex, StorageContext
5
+ from llama_index.vector_stores.qdrant import QdrantVectorStore
6
+ from llama_index.embeddings.fastembed import FastEmbedEmbedding
7
+ from llama_index.llms.gemini import Gemini
8
+ from llama_index.core.memory import ChatMemoryBuffer
9
+ from llama_index.readers.web import FireCrawlWebReader
10
+ import dotenv
11
+ import time
12
+
13
+ dotenv.load_dotenv()
14
+
15
+ # Global variables
16
+ index = None
17
+ chat_engine = None
18
+ collection_name = ""
19
+
20
+ def embed_setup():
21
+ Settings.embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5")
22
+ Settings.llm = Gemini(temperature=0.1, model_name="models/gemini-pro")
23
+
24
+ def qdrant_setup():
25
+ client = qdrant_client.QdrantClient(
26
+ os.getenv("QDRANT_URL"),
27
+ api_key=os.getenv("QDRANT_API_KEY"),
28
+ )
29
+ return client
30
+
31
+ def ingest_documents(url):
32
+ firecrawl_reader = FireCrawlWebReader(
33
+ api_key=os.getenv("FIRECRAWL_API_KEY"),
34
+ mode="scrape",
35
+ )
36
+ documents = firecrawl_reader.load_data(url=url)
37
+ return documents
38
+
39
+ def setup_query_engine(url, coll_name):
40
+ global index, chat_engine, collection_name
41
+ collection_name = coll_name
42
+
43
+ embed_setup()
44
+ client = qdrant_setup()
45
+ vector_store = QdrantVectorStore(client=client, collection_name=collection_name)
46
+ storage_context = StorageContext.from_defaults(vector_store=vector_store)
47
+
48
+ if url:
49
+ documents = ingest_documents(url)
50
+ index = VectorStoreIndex.from_documents(documents, vector_store=vector_store, storage_context=storage_context)
51
+ else:
52
+ index = VectorStoreIndex.from_vector_store(vector_store=vector_store, storage_context=storage_context)
53
+
54
+ memory = ChatMemoryBuffer.from_defaults(token_limit=4000)
55
+ chat_engine = index.as_chat_engine(
56
+ chat_mode="context",
57
+ memory=memory,
58
+ system_prompt=(
59
+ """You are an AI assistant for developers, specializing in technical documentation. Your task is to provide accurate, concise, and helpful responses based on the given documentation context.
60
+ Context information is below:
61
+ {context_str}
62
+ Always answer based on the information in the context and general knowledge and be precise
63
+ Given this context, please respond to the following user query:
64
+ {query_str}
65
+ Your response should:
66
+ Directly address the query using information from the context
67
+ Include relevant code examples or direct quotes if applicable
68
+ Mention specific sections or pages of the documentation
69
+ Highlight any best practices or potential pitfalls related to the query
70
+ After your response, suggest 3 follow-up questions based on the context that the user might find helpful for deeper understanding.
71
+ ALWAYS SUGGEST FOLLOW UP QUESTIONS
72
+ Your response:"""
73
+ ),
74
+ )
75
+ return "Query engine setup completed successfully!"
76
+
77
+ def query_documentation(query):
78
+ global chat_engine
79
+ if not chat_engine:
80
+ return "Please set up the query engine first."
81
+
82
+ try:
83
+ response = chat_engine.chat(query)
84
+ return str(response.response)
85
+ except Exception as e:
86
+ error_message = f"An error occurred: {str(e)}"
87
+ time.sleep(120)
88
+ try:
89
+ response = chat_engine.chat(query)
90
+ return str(response.response)
91
+ except Exception as e:
92
+ return f"Retry failed. Error: {str(e)}"
93
+
94
+ # Gradio interface
95
+ with gr.Blocks() as app:
96
+ gr.Markdown("# Talk to Software Documentation")
97
+
98
+ with gr.Tab("Setup"):
99
+ url_input = gr.Textbox(label="Enter URL to crawl and ingest documents (optional)")
100
+ collection_input = gr.Textbox(label="Enter collection name for vector store (compulsory)")
101
+ setup_button = gr.Button("Setup Query Engine")
102
+ setup_output = gr.Textbox(label="Setup Output")
103
+
104
+ setup_button.click(setup_query_engine, inputs=[url_input, collection_input], outputs=setup_output)
105
+
106
+ with gr.Tab("Chat"):
107
+ chatbot = gr.Chatbot()
108
+ msg = gr.Textbox(label="Enter your query")
109
+ clear = gr.Button("Clear")
110
+
111
+ def user(user_message, history):
112
+ return "", history + [[user_message, None]]
113
+
114
+ def bot(history):
115
+ user_message = history[-1][0]
116
+ bot_message = query_documentation(user_message)
117
+ history[-1][1] = bot_message
118
+ return history
119
+
120
+ msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
121
+ bot, chatbot, chatbot
122
+ )
123
+ clear.click(lambda: None, None, chatbot, queue=False)
124
+
125
+ if __name__ == "__main__":
126
+ app.launch()