Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from llama_index.core.indices.vector_store.base import VectorStoreIndex
|
4 |
+
from llama_index.vector_stores.qdrant import QdrantVectorStore
|
5 |
+
from llama_index.embeddings.fastembed import FastEmbedEmbedding
|
6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
+
from llama_index.core import Settings
|
8 |
+
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, StorageContext
|
9 |
+
import qdrant_client
|
10 |
+
from llama_index.core.indices.query.schema import QueryBundle
|
11 |
+
from llama_index.llms.gemini import Gemini
|
12 |
+
from llama_index.embeddings.gemini import GeminiEmbedding
|
13 |
+
from llama_index.core.memory import ChatMemoryBuffer
|
14 |
+
from llama_index.readers.web import FireCrawlWebReader
|
15 |
+
from llama_index.core import SummaryIndex
|
16 |
+
|
17 |
+
# Setup functions
|
18 |
+
def embed_setup():
|
19 |
+
Settings.embed_model = GeminiEmbedding(api_key=os.getenv("GOOGLE_API_KEY"), model_name="models/embedding-001")
|
20 |
+
Settings.llm = Gemini(api_key=os.getenv("GOOGLE_API_KEY"), temperature=0.1, model_name="models/gemini-pro")
|
21 |
+
|
22 |
+
def qdrant_setup():
|
23 |
+
client = qdrant_client.QdrantClient(
|
24 |
+
os.getenv('QDRANT_URL'),
|
25 |
+
api_key = os.getenv('QDRANT_API_KEY'),
|
26 |
+
)
|
27 |
+
return client
|
28 |
+
|
29 |
+
def llm_setup():
|
30 |
+
llm = Gemini(api_key=os.getenv("GOOGLE_API_KEY"), temperature=0.1, model_name="models/gemini-pro")
|
31 |
+
return llm
|
32 |
+
|
33 |
+
def query_index(index, similarity_top_k=3, streaming=True):
|
34 |
+
memory = ChatMemoryBuffer.from_defaults(token_limit=4000)
|
35 |
+
chat_engine = index.as_chat_engine(
|
36 |
+
chat_mode="context",
|
37 |
+
memory=memory,
|
38 |
+
system_prompt=(
|
39 |
+
"""You are an AI assistant for developers, specializing in technical documentation. Your task is to provide accurate, concise, and helpful responses based on the given documentation context.
|
40 |
+
Context information is below:
|
41 |
+
{context_str}
|
42 |
+
Always answer based on the information in the context and general knowledge and be precise
|
43 |
+
Given this context, please respond to the following user query:
|
44 |
+
{query_str}
|
45 |
+
Your response should:
|
46 |
+
|
47 |
+
Directly address the query using information from the context
|
48 |
+
Include relevant code examples or direct quotes if applicable
|
49 |
+
Mention specific sections or pages of the documentation
|
50 |
+
Highlight any best practices or potential pitfalls related to the query
|
51 |
+
|
52 |
+
After your response, suggest 3 follow-up questions based on the context that the user might find helpful for deeper understanding.
|
53 |
+
Your response:"""
|
54 |
+
),
|
55 |
+
)
|
56 |
+
return chat_engine
|
57 |
+
|
58 |
+
# Document ingestion function
|
59 |
+
def ingest_documents(url):
|
60 |
+
firecrawl_reader = FireCrawlWebReader(
|
61 |
+
api_key=os.getenv("FIRECRAWL_API_KEY"),
|
62 |
+
mode="crawl",
|
63 |
+
)
|
64 |
+
documents = firecrawl_reader.load_data(url=url)
|
65 |
+
return documents
|
66 |
+
|
67 |
+
# Streamlit app
|
68 |
+
st.title("Talk to Software Documentation")
|
69 |
+
|
70 |
+
# Initialize session state
|
71 |
+
if 'chat_engine' not in st.session_state:
|
72 |
+
st.session_state['chat_engine'] = None
|
73 |
+
if 'documents' not in st.session_state:
|
74 |
+
st.session_state['documents'] = None
|
75 |
+
if 'chat_history' not in st.session_state:
|
76 |
+
st.session_state['chat_history'] = []
|
77 |
+
if 'last_response' not in st.session_state:
|
78 |
+
st.session_state['last_response'] = None
|
79 |
+
|
80 |
+
|
81 |
+
# URL input for document ingestion
|
82 |
+
url = st.text_input("Enter URL to crawl and ingest documents:")
|
83 |
+
|
84 |
+
# Ingest documents button
|
85 |
+
if st.button("Ingest Documents"):
|
86 |
+
if url:
|
87 |
+
with st.spinner("Crawling and ingesting documents..."):
|
88 |
+
st.session_state['documents'] = ingest_documents(url)
|
89 |
+
st.success(f"Documents ingested from {url}")
|
90 |
+
else:
|
91 |
+
st.error("Please enter a URL")
|
92 |
+
|
93 |
+
# Setup button
|
94 |
+
if st.button("Setup Query Engine"):
|
95 |
+
if st.session_state['documents'] is None:
|
96 |
+
st.error("Please ingest documents first")
|
97 |
+
else:
|
98 |
+
with st.spinner("Setting up query engine..."):
|
99 |
+
embed_setup()
|
100 |
+
client = qdrant_setup()
|
101 |
+
llm = llm_setup()
|
102 |
+
vector_store = QdrantVectorStore(client=client, collection_name=os.getenv("COLLECTION_NAME"))
|
103 |
+
index = VectorStoreIndex.from_documents(st.session_state['documents'], vector_store=vector_store)
|
104 |
+
st.session_state['chat_engine'] = query_index(index)
|
105 |
+
st.success("Query engine setup completed successfully!")
|
106 |
+
|
107 |
+
# Query input
|
108 |
+
query = st.text_input("Enter your query:")
|
109 |
+
|
110 |
+
# Search button
|
111 |
+
if st.button("Search"):
|
112 |
+
if st.session_state['chat_engine'] is None:
|
113 |
+
st.error("Please complete the setup first")
|
114 |
+
elif query:
|
115 |
+
with st.spinner("Searching..."):
|
116 |
+
response = st.session_state['chat_engine'].chat(query)
|
117 |
+
|
118 |
+
# Add the query and response to chat history
|
119 |
+
st.session_state['chat_history'].append(("User", query))
|
120 |
+
st.session_state['chat_history'].append(("Assistant", str(response.response)))
|
121 |
+
|
122 |
+
# Display the most recent response prominently
|
123 |
+
st.subheader("Assistant's Response:")
|
124 |
+
st.write(response.response)
|
125 |
+
else:
|
126 |
+
st.error("Please enter a query")
|
127 |
+
|
128 |
+
if st.session_state['chat_history']:
|
129 |
+
st.subheader("Chat History")
|
130 |
+
for role, message in st.session_state['chat_history']:
|
131 |
+
st.text(f"{role}: {message}")
|
132 |
+
|
133 |
+
# Clear chat history button
|
134 |
+
if st.button("Clear Chat History"):
|
135 |
+
st.session_state['chat_history'] = []
|
136 |
+
st.success("Chat history cleared!")
|