Spaces:
Runtime error
Runtime error
Commit
·
71f4c16
1
Parent(s):
b86f76f
dsds
Browse files- main.py +146 -80
- requirements.txt +1 -2
main.py
CHANGED
|
@@ -1,57 +1,100 @@
|
|
| 1 |
-
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
| 2 |
|
| 3 |
|
| 4 |
-
# # from fastapi import FastAPI
|
| 5 |
-
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 6 |
-
# # import librosa
|
| 7 |
-
# # import uvicorn
|
| 8 |
|
| 9 |
-
# # app = FastAPI()
|
| 10 |
|
| 11 |
-
# # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 12 |
-
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 13 |
-
# # model.config.forced_decoder_ids = None
|
| 14 |
|
| 15 |
-
# # audio_file_path = "output.mp3"
|
| 16 |
|
| 17 |
-
# # audio_data, _ = librosa.load(audio_file_path, sr=16000)
|
| 18 |
|
| 19 |
-
# # @app.get("/")
|
| 20 |
-
# # def transcribe_audio():
|
| 21 |
-
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
| 22 |
|
| 23 |
-
# # predicted_ids = model.generate(input_features)
|
| 24 |
-
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 25 |
|
| 26 |
-
# # return {"transcription": transcription[0]}
|
| 27 |
|
| 28 |
|
| 29 |
-
# # if __name__ == "__main__":
|
| 30 |
-
# # import uvicorn
|
| 31 |
-
# # uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 32 |
|
| 33 |
|
| 34 |
-
# # if __name__=='__main__':
|
| 35 |
-
# # uvicorn.run('main:app', reload=True)
|
| 36 |
|
| 37 |
|
| 38 |
|
| 39 |
|
| 40 |
-
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
| 41 |
-
# #curl -X GET "http://localhost:8000/?text=I%20like%20Apples"
|
| 42 |
-
# #http://localhost:8000/?text=I%20like%20Apples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
|
| 50 |
|
| 51 |
-
|
|
|
|
| 52 |
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 53 |
# # import librosa
|
|
|
|
| 54 |
# # import uvicorn
|
|
|
|
| 55 |
|
| 56 |
# # app = FastAPI()
|
| 57 |
|
|
@@ -60,15 +103,30 @@
|
|
| 60 |
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 61 |
# # model.config.forced_decoder_ids = None
|
| 62 |
|
| 63 |
-
# # # Path to your audio file
|
| 64 |
-
# # audio_file_path = "/home/pranjal/Downloads/output.mp3"
|
| 65 |
-
|
| 66 |
-
# # # Read the audio file
|
| 67 |
-
# # audio_data, _ = librosa.load(audio_file_path, sr=16000)
|
| 68 |
-
|
| 69 |
# # @app.get("/")
|
| 70 |
-
# # def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
# # # Process the audio data using the Whisper processor
|
|
|
|
| 72 |
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
| 73 |
|
| 74 |
# # # Generate transcription
|
|
@@ -76,18 +134,19 @@
|
|
| 76 |
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 77 |
|
| 78 |
# # return {"transcription": transcription[0]}
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
# # if __name__ == "
|
| 81 |
-
# #
|
| 82 |
-
# # uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 83 |
|
| 84 |
|
| 85 |
-
# # if __name__=='__app__':
|
| 86 |
-
# # uvicorn.run('main:app', reload=True)
|
| 87 |
|
| 88 |
|
| 89 |
|
| 90 |
|
|
|
|
|
|
|
| 91 |
|
| 92 |
# from fastapi import FastAPI, UploadFile, File
|
| 93 |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
@@ -98,10 +157,14 @@
|
|
| 98 |
|
| 99 |
# app = FastAPI()
|
| 100 |
|
| 101 |
-
# # Load model and processor
|
| 102 |
-
# processor = WhisperProcessor.from_pretrained("openai/whisper-
|
| 103 |
-
# model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-
|
| 104 |
-
# model.config.forced_decoder_ids = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
# @app.get("/")
|
| 107 |
# def read_root():
|
|
@@ -126,45 +189,44 @@
|
|
| 126 |
# audio_data = await audio_file.read()
|
| 127 |
|
| 128 |
# # Process the audio data using the Whisper processor
|
| 129 |
-
# audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
|
| 130 |
-
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
| 131 |
|
| 132 |
-
# # Generate transcription
|
| 133 |
-
# predicted_ids = model.generate(input_features)
|
| 134 |
-
# transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
|
|
|
| 135 |
|
| 136 |
-
# return {"transcription":
|
| 137 |
# except Exception as e:
|
| 138 |
# return {"error": str(e)}
|
| 139 |
|
| 140 |
-
# if __name__ == "__app__":
|
| 141 |
-
# uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
|
| 148 |
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
| 149 |
|
| 150 |
-
|
| 151 |
from fastapi import FastAPI, UploadFile, File
|
| 152 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 153 |
-
import librosa
|
| 154 |
from fastapi.responses import HTMLResponse
|
| 155 |
-
import
|
| 156 |
import io
|
|
|
|
| 157 |
|
| 158 |
-
app = FastAPI()
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
| 166 |
-
model =
|
|
|
|
| 167 |
|
|
|
|
|
|
|
| 168 |
|
| 169 |
@app.get("/")
|
| 170 |
def read_root():
|
|
@@ -184,23 +246,27 @@ def read_root():
|
|
| 184 |
|
| 185 |
@app.post("/transcribe")
|
| 186 |
async def transcribe_audio(audio_file: UploadFile):
|
| 187 |
-
try:
|
| 188 |
-
# Read the uploaded audio file
|
| 189 |
audio_data = await audio_file.read()
|
|
|
|
| 190 |
|
| 191 |
-
|
| 192 |
-
# audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
|
| 193 |
-
# input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
return {"error": str(e)}
|
| 203 |
-
|
| 204 |
-
# if __name__ == "__app__":
|
| 205 |
-
# uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|
| 206 |
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# # #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
| 2 |
|
| 3 |
|
| 4 |
+
# # # from fastapi import FastAPI
|
| 5 |
+
# # # from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 6 |
+
# # # import librosa
|
| 7 |
+
# # # import uvicorn
|
| 8 |
|
| 9 |
+
# # # app = FastAPI()
|
| 10 |
|
| 11 |
+
# # # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 12 |
+
# # # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 13 |
+
# # # model.config.forced_decoder_ids = None
|
| 14 |
|
| 15 |
+
# # # audio_file_path = "output.mp3"
|
| 16 |
|
| 17 |
+
# # # audio_data, _ = librosa.load(audio_file_path, sr=16000)
|
| 18 |
|
| 19 |
+
# # # @app.get("/")
|
| 20 |
+
# # # def transcribe_audio():
|
| 21 |
+
# # # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
| 22 |
|
| 23 |
+
# # # predicted_ids = model.generate(input_features)
|
| 24 |
+
# # # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 25 |
|
| 26 |
+
# # # return {"transcription": transcription[0]}
|
| 27 |
|
| 28 |
|
| 29 |
+
# # # if __name__ == "__main__":
|
| 30 |
+
# # # import uvicorn
|
| 31 |
+
# # # uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 32 |
|
| 33 |
|
| 34 |
+
# # # if __name__=='__main__':
|
| 35 |
+
# # # uvicorn.run('main:app', reload=True)
|
| 36 |
|
| 37 |
|
| 38 |
|
| 39 |
|
| 40 |
+
# # #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
| 41 |
+
# # #curl -X GET "http://localhost:8000/?text=I%20like%20Apples"
|
| 42 |
+
# # #http://localhost:8000/?text=I%20like%20Apples
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# # # from fastapi import FastAPI
|
| 52 |
+
# # # from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 53 |
+
# # # import librosa
|
| 54 |
+
# # # import uvicorn
|
| 55 |
+
|
| 56 |
+
# # # app = FastAPI()
|
| 57 |
+
|
| 58 |
+
# # # # Load model and processor
|
| 59 |
+
# # # processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 60 |
+
# # # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 61 |
+
# # # model.config.forced_decoder_ids = None
|
| 62 |
+
|
| 63 |
+
# # # # Path to your audio file
|
| 64 |
+
# # # audio_file_path = "/home/pranjal/Downloads/output.mp3"
|
| 65 |
+
|
| 66 |
+
# # # # Read the audio file
|
| 67 |
+
# # # audio_data, _ = librosa.load(audio_file_path, sr=16000)
|
| 68 |
|
| 69 |
+
# # # @app.get("/")
|
| 70 |
+
# # # def transcribe_audio():
|
| 71 |
+
# # # # Process the audio data using the Whisper processor
|
| 72 |
+
# # # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
| 73 |
+
|
| 74 |
+
# # # # Generate transcription
|
| 75 |
+
# # # predicted_ids = model.generate(input_features)
|
| 76 |
+
# # # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 77 |
+
|
| 78 |
+
# # # return {"transcription": transcription[0]}
|
| 79 |
|
| 80 |
+
# # # if __name__ == "__main__":
|
| 81 |
+
# # # import uvicorn
|
| 82 |
+
# # # uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 83 |
|
| 84 |
|
| 85 |
+
# # # if __name__=='__app__':
|
| 86 |
+
# # # uvicorn.run('main:app', reload=True)
|
| 87 |
|
| 88 |
|
| 89 |
|
| 90 |
|
| 91 |
+
|
| 92 |
+
# # from fastapi import FastAPI, UploadFile, File
|
| 93 |
# # from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 94 |
# # import librosa
|
| 95 |
+
# # from fastapi.responses import HTMLResponse
|
| 96 |
# # import uvicorn
|
| 97 |
+
# # import io
|
| 98 |
|
| 99 |
# # app = FastAPI()
|
| 100 |
|
|
|
|
| 103 |
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 104 |
# # model.config.forced_decoder_ids = None
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
# # @app.get("/")
|
| 107 |
+
# # def read_root():
|
| 108 |
+
# # html_form = """
|
| 109 |
+
# # <html>
|
| 110 |
+
# # <body>
|
| 111 |
+
# # <h2>ASR Transcription</h2>
|
| 112 |
+
# # <form action="/transcribe" method="post" enctype="multipart/form-data">
|
| 113 |
+
# # <label for="audio_file">Upload an audio file (MP3 or WAV):</label>
|
| 114 |
+
# # <input type="file" id="audio_file" name="audio_file" accept=".mp3, .wav" required><br><br>
|
| 115 |
+
# # <input type="submit" value="Transcribe">
|
| 116 |
+
# # </form>
|
| 117 |
+
# # </body>
|
| 118 |
+
# # </html>
|
| 119 |
+
# # """
|
| 120 |
+
# # return HTMLResponse(content=html_form, status_code=200)
|
| 121 |
+
|
| 122 |
+
# # @app.post("/transcribe")
|
| 123 |
+
# # async def transcribe_audio(audio_file: UploadFile):
|
| 124 |
+
# # try:
|
| 125 |
+
# # # Read the uploaded audio file
|
| 126 |
+
# # audio_data = await audio_file.read()
|
| 127 |
+
|
| 128 |
# # # Process the audio data using the Whisper processor
|
| 129 |
+
# # audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
|
| 130 |
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
| 131 |
|
| 132 |
# # # Generate transcription
|
|
|
|
| 134 |
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 135 |
|
| 136 |
# # return {"transcription": transcription[0]}
|
| 137 |
+
# # except Exception as e:
|
| 138 |
+
# # return {"error": str(e)}
|
| 139 |
|
| 140 |
+
# # if __name__ == "__app__":
|
| 141 |
+
# # uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|
|
|
|
| 142 |
|
| 143 |
|
|
|
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
|
| 147 |
|
| 148 |
+
# #uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
| 149 |
+
|
| 150 |
|
| 151 |
# from fastapi import FastAPI, UploadFile, File
|
| 152 |
# from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
|
|
| 157 |
|
| 158 |
# app = FastAPI()
|
| 159 |
|
| 160 |
+
# # # Load model and processor
|
| 161 |
+
# # processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
|
| 162 |
+
# # model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium")
|
| 163 |
+
# # model.config.forced_decoder_ids = None
|
| 164 |
+
|
| 165 |
+
# import whisper
|
| 166 |
+
# model = whisper.load_model("small")
|
| 167 |
+
|
| 168 |
|
| 169 |
# @app.get("/")
|
| 170 |
# def read_root():
|
|
|
|
| 189 |
# audio_data = await audio_file.read()
|
| 190 |
|
| 191 |
# # Process the audio data using the Whisper processor
|
| 192 |
+
# # audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
|
| 193 |
+
# # input_features = processor(audio_data.tolist(), return_tensors="pt").input_features
|
| 194 |
|
| 195 |
+
# # # Generate transcription
|
| 196 |
+
# # predicted_ids = model.generate(input_features)
|
| 197 |
+
# # transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 198 |
+
# result = model.transcribe("/home/pranjal/Downloads/rt.mp3")
|
| 199 |
|
| 200 |
+
# return {"transcription": result['text']}
|
| 201 |
# except Exception as e:
|
| 202 |
# return {"error": str(e)}
|
| 203 |
|
| 204 |
+
# # if __name__ == "__app__":
|
| 205 |
+
# # uvicorn.run(app, host="0.0.0.0", port=8000, reload=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
#uvicorn app:app --host 0.0.0.0 --port 8000 --reload
|
| 208 |
|
|
|
|
| 209 |
from fastapi import FastAPI, UploadFile, File
|
| 210 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
|
|
| 211 |
from fastapi.responses import HTMLResponse
|
| 212 |
+
import librosa
|
| 213 |
import io
|
| 214 |
+
import re
|
| 215 |
|
|
|
|
| 216 |
|
| 217 |
+
html_tag_remover = re.compile(r'<[^>]+>')
|
| 218 |
+
|
| 219 |
+
def remove_tags(text):
|
| 220 |
+
return html_tag_remover.sub('', text)
|
| 221 |
+
|
| 222 |
+
app = FastAPI()
|
| 223 |
|
| 224 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 225 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 226 |
+
model.config.forced_decoder_ids = None
|
| 227 |
|
| 228 |
+
chunk_duration = 30
|
| 229 |
+
overlap_duration = 5
|
| 230 |
|
| 231 |
@app.get("/")
|
| 232 |
def read_root():
|
|
|
|
| 246 |
|
| 247 |
@app.post("/transcribe")
|
| 248 |
async def transcribe_audio(audio_file: UploadFile):
|
|
|
|
|
|
|
| 249 |
audio_data = await audio_file.read()
|
| 250 |
+
audio_data, _ = librosa.load(io.BytesIO(audio_data), sr=16000)
|
| 251 |
|
| 252 |
+
transcription = []
|
|
|
|
|
|
|
| 253 |
|
| 254 |
+
start = 0
|
| 255 |
+
while start < len(audio_data):
|
| 256 |
+
end = start + chunk_duration * 16000
|
| 257 |
+
audio_chunk = audio_data[start:end]
|
| 258 |
+
|
| 259 |
+
input_features = processor(audio_chunk.tolist(), return_tensors="pt").input_features
|
| 260 |
+
predicted_ids = model.generate(input_features, max_length=1000)
|
| 261 |
+
chunk_transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
| 262 |
+
|
| 263 |
+
transcription.extend(chunk_transcription)
|
| 264 |
+
|
| 265 |
+
start = end - overlap_duration * 16000
|
| 266 |
|
| 267 |
+
final_transcription = " ".join(transcription)
|
| 268 |
+
final_transcription = remove_tags(final_transcription)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
+
|
| 271 |
+
return {"transcription": final_transcription}
|
| 272 |
+
|
requirements.txt
CHANGED
|
@@ -6,5 +6,4 @@ uvicorn
|
|
| 6 |
transformers
|
| 7 |
Torch
|
| 8 |
python-multipart
|
| 9 |
-
|
| 10 |
-
ffmpeg
|
|
|
|
| 6 |
transformers
|
| 7 |
Torch
|
| 8 |
python-multipart
|
| 9 |
+
re
|
|
|