import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") import gradio as gr def greet(my_text): with torch.no_grad(): tokens = tokenizer(my_text, padding=True, truncation=True, return_tensors="pt") outputs = model(**tokens) logits = outputs.logits probabilities = torch.softmax(logits, dim=1) label_ids = torch.argmax(probabilities, dim=1) labels = ['Negative', 'Positive'] label = labels[label_ids] return label demo = gr.Interface(fn=greet, inputs="text", outputs="text", title="Sentiment Analysis",description ="Classify a text into either Positive or negative", article = "hey my name is pranjal khadka and this is a sentiment analysis app") demo.launch()