import os import re import sys import glob import logging import gradio as gr from typing import List, Dict, Any, Optional, Tuple from bs4 import BeautifulSoup import markdown from markdown.extensions.tables import TableExtension from markdown.extensions.fenced_code import FencedCodeExtension from markdown.extensions.toc import TocExtension from reportlab.lib.pagesizes import letter, A4 from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import inch from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image, PageBreak, Preformatted, ListFlowable, ListItem from reportlab.lib.colors import HexColor, black, grey from reportlab.lib import colors from reportlab.lib.enums import TA_LEFT, TA_CENTER, TA_RIGHT import html import base64 import requests from PIL import Image as PilImage import io import tempfile from datetime import datetime # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) class MarkdownToPDFConverter: """ Class to convert Markdown content to PDF using ReportLab. """ def __init__( self, output_path: str = "output.pdf", page_size: str = "A4", margins: Tuple[float, float, float, float] = (0.75, 0.75, 0.75, 0.75), font_name: str = "Helvetica", base_font_size: int = 10, heading_scale: Dict[int, float] = None, include_toc: bool = True, code_style: str = "github" ): """ Initialize the converter with configuration options. Args: output_path: Path to save the PDF page_size: Page size ("A4" or "letter") margins: Tuple of margins (left, right, top, bottom) in inches font_name: Base font name to use base_font_size: Base font size in points heading_scale: Dictionary of heading levels to font size multipliers include_toc: Whether to include a table of contents code_style: Style to use for code blocks """ self.output_path = output_path self.page_size = A4 if page_size.upper() == "A4" else letter self.margins = margins self.font_name = font_name self.base_font_size = base_font_size self.heading_scale = heading_scale or { 1: 2.0, # H1 is 2.0x base font size 2: 1.7, # H2 is 1.7x base font size 3: 1.4, # H3 is 1.4x base font size 4: 1.2, # H4 is 1.2x base font size 5: 1.1, # H5 is 1.1x base font size 6: 1.0 # H6 is 1.0x base font size } self.include_toc = include_toc self.code_style = code_style # Initialize styles self.styles = getSampleStyleSheet() self._setup_styles() # Initialize document elements self.elements = [] self.toc_entries = [] def _setup_styles(self) -> None: """Set up custom paragraph styles for the document.""" # Modify existing Normal style self.styles['Normal'].fontName = self.font_name self.styles['Normal'].fontSize = self.base_font_size self.styles['Normal'].leading = self.base_font_size * 1.2 self.styles['Normal'].spaceAfter = self.base_font_size * 0.8 # Heading styles for level in range(1, 7): size_multiplier = self.heading_scale.get(level, 1.0) heading_name = f'Heading{level}' # Check if the heading style already exists if heading_name in self.styles: # Modify existing style self.styles[heading_name].parent = self.styles['Normal'] self.styles[heading_name].fontName = f'{self.font_name}-Bold' self.styles[heading_name].fontSize = int(self.base_font_size * size_multiplier) self.styles[heading_name].leading = int(self.base_font_size * size_multiplier * 1.2) self.styles[heading_name].spaceAfter = self.base_font_size self.styles[heading_name].spaceBefore = self.base_font_size * (1 + (0.2 * (7 - level))) else: # Create new style self.styles.add( ParagraphStyle( name=heading_name, parent=self.styles['Normal'], fontName=f'{self.font_name}-Bold', fontSize=int(self.base_font_size * size_multiplier), leading=int(self.base_font_size * size_multiplier * 1.2), spaceAfter=self.base_font_size, spaceBefore=self.base_font_size * (1 + (0.2 * (7 - level))), ) ) # Code block style self.styles.add( ParagraphStyle( name='CodeBlock', fontName='Courier', fontSize=self.base_font_size * 0.9, leading=self.base_font_size * 1.1, spaceAfter=self.base_font_size, spaceBefore=self.base_font_size, leftIndent=self.base_font_size, backgroundColor=HexColor('#EEEEEE'), borderWidth=0, borderPadding=self.base_font_size * 0.5, ) ) # List item style self.styles.add( ParagraphStyle( name='ListItem', parent=self.styles['Normal'], leftIndent=self.base_font_size * 2, firstLineIndent=-self.base_font_size, ) ) # Table of contents styles self.styles.add( ParagraphStyle( name='TOCHeading', parent=self.styles['Heading1'], fontSize=int(self.base_font_size * 1.5), spaceAfter=self.base_font_size * 1.5, ) ) for level in range(1, 4): # Create styles for TOC levels self.styles.add( ParagraphStyle( name=f'TOC{level}', parent=self.styles['Normal'], leftIndent=self.base_font_size * (level - 1) * 2, fontSize=self.base_font_size - (level - 1), leading=self.base_font_size * 1.4, ) ) def convert_file(self, md_file_path: str) -> None: """ Convert a single markdown file to PDF. Args: md_file_path: Path to the markdown file """ # Read markdown content with open(md_file_path, 'r', encoding='utf-8') as f: md_content = f.read() # Convert markdown to PDF self.convert_content(md_content) def convert_content(self, md_content: str) -> None: """ Convert markdown content string to PDF. Args: md_content: Markdown content as a string """ # Convert markdown to HTML html_content = self._md_to_html(md_content) # Convert HTML to ReportLab elements self._html_to_elements(html_content) # Generate the PDF self._generate_pdf() logger.info(f"PDF created at {self.output_path}") def convert_multiple_files(self, md_file_paths: List[str], merge: bool = True, separate_toc: bool = False) -> None: """ Convert multiple markdown files to PDF. Args: md_file_paths: List of paths to markdown files merge: Whether to merge all files into a single PDF separate_toc: Whether to include a separate TOC for each file """ if merge: all_content = [] for file_path in md_file_paths: logger.info(f"Processing {file_path}") with open(file_path, 'r', encoding='utf-8') as f: content = f.read() # Add file name as heading if more than one file if len(md_file_paths) > 1: file_name = os.path.splitext(os.path.basename(file_path))[0] content = f"# {file_name}\n\n{content}" # Add page break between files if all_content: all_content.append("\n\n
\n\n") all_content.append(content) combined_content = "\n".join(all_content) self.convert_content(combined_content) else: # Process each file separately for i, file_path in enumerate(md_file_paths): converter = MarkdownToPDFConverter( output_path=f"{os.path.splitext(file_path)[0]}.pdf", page_size=self.page_size, margins=self.margins, font_name=self.font_name, base_font_size=self.base_font_size, heading_scale=self.heading_scale, include_toc=separate_toc, code_style=self.code_style ) converter.convert_file(file_path) def _md_to_html(self, md_content: str) -> str: """ Convert markdown content to HTML. Args: md_content: Markdown content Returns: HTML content """ # Define extensions for markdown conversion extensions = [ 'markdown.extensions.extra', 'markdown.extensions.smarty', TableExtension(), FencedCodeExtension(), TocExtension(toc_depth=3) if self.include_toc else None ] # Remove None values extensions = [ext for ext in extensions if ext is not None] # Convert markdown to HTML html_content = markdown.markdown(md_content, extensions=extensions) return html_content def _html_to_elements(self, html_content: str) -> None: """ Convert HTML content to ReportLab elements. Args: html_content: HTML content """ soup = BeautifulSoup(html_content, 'html.parser') # Process elements for element in soup.children: if element.name: self._process_element(element) def _process_element(self, element: BeautifulSoup) -> None: """ Process an HTML element and convert it to ReportLab elements. Args: element: BeautifulSoup element """ if element.name in ['h1', 'h2', 'h3', 'h4', 'h5', 'h6']: level = int(element.name[1]) text = element.get_text() # Add to TOC if self.include_toc: self.toc_entries.append((level, text)) # Create heading paragraph self.elements.append( Paragraph(text, self.styles[f'Heading{level}']) ) elif element.name == 'p': text = self._process_inline_elements(element) self.elements.append( Paragraph(text, self.styles['Normal']) ) elif element.name == 'pre': code = element.get_text() self.elements.append( Preformatted(code, self.styles['CodeBlock']) ) elif element.name == 'img': src = element.get('src', '') alt = element.get('alt', 'Image') # Handle different image sources if src.startswith('http'): # Remote image try: response = requests.get(src) img_data = response.content img_stream = io.BytesIO(img_data) image = Image(img_stream, width=4*inch, height=3*inch) # Try to get actual dimensions try: pil_img = PilImage.open(img_stream) width, height = pil_img.size aspect = width / height max_width = 6 * inch if width > max_width: new_width = max_width new_height = new_width / aspect image = Image(img_stream, width=new_width, height=new_height) except: pass # Use default size if image can't be processed self.elements.append(image) except: # If image can't be retrieved, add a placeholder self.elements.append( Paragraph(f"[Image: {alt}]", self.styles['Normal']) ) elif src.startswith('data:image'): # Base64 encoded image try: # Extract base64 data b64_data = src.split(',')[1] img_data = base64.b64decode(b64_data) img_stream = io.BytesIO(img_data) image = Image(img_stream, width=4*inch, height=3*inch) self.elements.append(image) except: # If image can't be processed, add a placeholder self.elements.append( Paragraph(f"[Image: {alt}]", self.styles['Normal']) ) else: # Local image if os.path.exists(src): image = Image(src, width=4*inch, height=3*inch) self.elements.append(image) else: # If image can't be found, add a placeholder self.elements.append( Paragraph(f"[Image: {alt}]", self.styles['Normal']) ) elif element.name == 'ul' or element.name == 'ol': list_items = [] bullet_type = 'bullet' if element.name == 'ul' else 'numbered' for item in element.find_all('li', recursive=False): text = self._process_inline_elements(item) list_items.append( ListItem( Paragraph(text, self.styles['ListItem']), leftIndent=20 ) ) self.elements.append( ListFlowable( list_items, bulletType=bullet_type, start=1 if bullet_type == 'numbered' else None, bulletFormat='%s.' if bullet_type == 'numbered' else '%s' ) ) elif element.name == 'table': self._process_table(element) elif element.name == 'div' and 'page-break' in element.get('class', []): self.elements.append(PageBreak()) elif element.name == 'hr': self.elements.append(Spacer(1, 0.25*inch)) # Process children for complex elements elif element.name in ['div', 'blockquote', 'section', 'article']: for child in element.children: if hasattr(child, 'name') and child.name: self._process_element(child) def _process_inline_elements(self, element: BeautifulSoup) -> str: """ Process inline HTML elements like bold, italic, etc. Args: element: BeautifulSoup element Returns: Formatted text with ReportLab markup """ html_str = str(element) # Convert common HTML tags to ReportLab paragraph markup replacements = [ (r'(.*?)', r'\1'), (r'(.*?)', r'\1'), (r'(.*?)', r'\1'), (r'(.*?)', r'\1'), (r'(.*?)', r'\1'), (r'(.*?)', r'\2'), (r'(.*?)', r'\1'), (r'(.*?)', r'\1'), (r'(.*?)', r'\1'), ] for pattern, replacement in replacements: html_str = re.sub(pattern, replacement, html_str, flags=re.DOTALL) # Extract text with our ReportLab markup from the modified HTML soup = BeautifulSoup(html_str, 'html.parser') return soup.get_text() def _process_table(self, table_element: BeautifulSoup) -> None: """ Process an HTML table into a ReportLab Table. Args: table_element: BeautifulSoup table element """ rows = [] # Extract header row thead = table_element.find('thead') if thead: header_cells = [] for th in thead.find_all(['th']): text = self._process_inline_elements(th) # Create a paragraph with bold text for headers header_cells.append(Paragraph(f"{text}", self.styles['Normal'])) rows.append(header_cells) # Extract body rows tbody = table_element.find('tbody') or table_element for tr in tbody.find_all('tr'): if tr.parent.name == 'thead': continue # Skip header rows already processed row_cells = [] for cell in tr.find_all(['td', 'th']): text = self._process_inline_elements(cell) if cell.name == 'th': # Headers are bold row_cells.append(Paragraph(f"{text}", self.styles['Normal'])) else: row_cells.append(Paragraph(text, self.styles['Normal'])) if row_cells: # Only add non-empty rows rows.append(row_cells) if rows: # Create table and style col_widths = [None] * len(rows[0]) # Auto width for columns table = Table(rows, colWidths=col_widths) # Add basic grid and header styling style = TableStyle([ ('GRID', (0, 0), (-1, -1), 0.5, colors.Color(0.7, 0.7, 0.7)), ('BACKGROUND', (0, 0), (-1, 0), colors.Color(0.8, 0.8, 0.8)), ('TEXTCOLOR', (0, 0), (-1, 0), colors.black), ('ALIGN', (0, 0), (-1, 0), 'CENTER'), ('FONTNAME', (0, 0), (-1, 0), f'{self.font_name}-Bold'), ('BOTTOMPADDING', (0, 0), (-1, 0), 8), ('TOPPADDING', (0, 0), (-1, 0), 8), ('BOTTOMPADDING', (0, 1), (-1, -1), 6), ('TOPPADDING', (0, 1), (-1, -1), 6), ]) table.setStyle(style) self.elements.append(table) # Add some space after the table self.elements.append(Spacer(1, 0.1*inch)) def _generate_toc(self) -> None: """Generate a table of contents.""" if not self.toc_entries: return self.elements.append(Paragraph("Table of Contents", self.styles['TOCHeading'])) self.elements.append(Spacer(1, 0.2*inch)) for level, text in self.toc_entries: if level <= 3: # Only include headings up to level 3 self.elements.append( Paragraph(text, self.styles[f'TOC{level}']) ) self.elements.append(PageBreak()) def _generate_pdf(self) -> None: """Generate the PDF document.""" # Create the document doc = SimpleDocTemplate( self.output_path, pagesize=self.page_size, leftMargin=self.margins[0]*inch, rightMargin=self.margins[1]*inch, topMargin=self.margins[2]*inch, bottomMargin=self.margins[3]*inch ) # Add TOC if requested if self.include_toc and self.toc_entries: self._generate_toc() # Build the PDF doc.build(self.elements) class MarkdownToPDFAgent: """ AI Agent to convert Markdown files to PDF with enhanced formatting. """ def __init__(self, llm=None): """ Initialize the agent with optional LLM for content enhancement. Args: llm: Optional language model for content enhancement """ self.llm = llm self.converter = MarkdownToPDFConverter() def setup_from_openai(self, api_key=None): """ Setup agent with OpenAI LLM. Args: api_key: OpenAI API key (will use env var if not provided) """ try: from langchain_openai import ChatOpenAI api_key = api_key or os.getenv("OPENAI_API_KEY") if not api_key: logger.warning("No OpenAI API key provided. Agent will run without LLM enhancement.") return False self.llm = ChatOpenAI( model="gpt-4", temperature=0.1, api_key=api_key ) return True except ImportError: logger.warning("LangChain OpenAI package not found. Install with 'pip install langchain-openai'") return False def setup_from_gemini(self, api_key=None): """ Setup agent with Google Gemini LLM. Args: api_key: Google Gemini API key (will use env var if not provided) """ try: from langchain_google_genai import ChatGoogleGenerativeAI api_key = api_key or os.getenv("GOOGLE_API_KEY") if not api_key: logger.warning("No Google API key provided. Agent will run without LLM enhancement.") return False try: # Use the latest Gemini model version self.llm = ChatGoogleGenerativeAI( model="gemini-1.5-flash", temperature=0.1, google_api_key=api_key, convert_system_message_to_human=True ) logger.info("Successfully set up Google Gemini LLM") return True except Exception as e: logger.error(f"Error setting up Google Gemini LLM: {str(e)}") return False except ImportError: logger.warning("LangChain Google Generative AI package not found. Install with 'pip install langchain-google-genai'") return False def enhance_markdown(self, content: str, instructions: str = None) -> str: """ Enhance markdown content using LLM if available. Args: content: Original markdown content instructions: Specific enhancement instructions Returns: Enhanced markdown content """ if not self.llm: logger.warning("No LLM available for enhancement. Returning original content.") return content default_instructions = """ Enhance this markdown content while preserving its structure and meaning. Make the following improvements: 1. Fix any grammar or spelling issues 2. Improve formatting for better readability 3. Ensure proper markdown syntax is used 4. Add appropriate section headings if missing 5. Keep the content factually identical to the original """ instructions = instructions or default_instructions try: # Create a prompt for the LLM prompt = f"{instructions}\n\nOriginal content:\n\n{content}\n\nPlease provide the enhanced markdown content:" # Use the LLM directly with proper error handling try: from langchain.schema import HumanMessage logger.info(f"Using LLM type: {type(self.llm).__name__}") messages = [HumanMessage(content=prompt)] result = self.llm.invoke(messages).content logger.info("Successfully received response from LLM") except Exception as e: logger.error(f"Error invoking LLM: {str(e)}") return content # Clean up the result (extract just the markdown part) result = self._clean_agent_output(result) return result except Exception as e: logger.error(f"Error enhancing markdown: {str(e)}") return content # Return original content if enhancement fails def _clean_agent_output(self, output: str) -> str: """ Clean up agent output to extract just the markdown content. Args: output: Raw agent output Returns: Cleaned markdown content """ # Check if the output is wrapped in markdown code blocks md_pattern = r"```(?:markdown|md)?\s*([\s\S]*?)```" match = re.search(md_pattern, output) if match: return match.group(1).strip() # If no markdown blocks found, remove any agent commentary lines = output.split('\n') result_lines = [] capture = False for line in lines: if capture or not (line.startswith("I") or line.startswith("Here") or line.startswith("The")): capture = True result_lines.append(line) return '\n'.join(result_lines) def process_file(self, input_path: str, output_path: str = None, enhance: bool = False, enhancement_instructions: str = None, page_size: str = "A4") -> str: """ Process a single markdown file and convert it to PDF. Args: input_path: Path to input markdown file output_path: Path for output PDF (defaults to input path with .pdf extension) enhance: Whether to enhance the content with LLM enhancement_instructions: Specific instructions for enhancement page_size: Page size for the PDF ("A4" or "letter") Returns: Path to the generated PDF """ # Validate input file if not os.path.exists(input_path): logger.error(f"Input file not found: {input_path}") return None # Set default output path if not provided if not output_path: output_path = os.path.splitext(input_path)[0] + ".pdf" # Read markdown content with open(input_path, 'r', encoding='utf-8') as f: content = f.read() # Enhance content if requested if enhance and self.llm: logger.info(f"Enhancing content for {input_path}") content = self.enhance_markdown(content, enhancement_instructions) # Configure converter self.converter = MarkdownToPDFConverter( output_path=output_path, page_size=page_size ) # Convert to PDF logger.info(f"Converting {input_path} to PDF") self.converter.convert_content(content) return output_path def process_directory(self, input_dir: str, output_dir: str = None, pattern: str = "*.md", enhance: bool = False, merge: bool = False, output_filename: str = "merged_document.pdf", page_size: str = "A4") -> List[str]: """ Process all markdown files in a directory. Args: input_dir: Path to input directory output_dir: Path to output directory (defaults to input directory) pattern: Glob pattern for markdown files enhance: Whether to enhance content with LLM merge: Whether to merge all files into a single PDF output_filename: Filename for merged PDF page_size: Page size for the PDF ("A4" or "letter") Returns: List of paths to generated PDFs """ # Validate input directory if not os.path.isdir(input_dir): logger.error(f"Input directory not found: {input_dir}") return [] # Set default output directory if not provided if not output_dir: output_dir = input_dir elif not os.path.exists(output_dir): os.makedirs(output_dir) # Get all markdown files md_files = glob.glob(os.path.join(input_dir, pattern)) if not md_files: logger.warning(f"No markdown files found in {input_dir} with pattern {pattern}") return [] # Sort files to ensure consistent ordering md_files.sort() if merge: logger.info(f"Merging {len(md_files)} markdown files into a single PDF") # Process each file for enhancement if requested if enhance and self.llm: enhanced_contents = [] for md_file in md_files: logger.info(f"Enhancing content for {md_file}") with open(md_file, 'r', encoding='utf-8') as f: content = f.read() # Add file name as heading file_name = os.path.splitext(os.path.basename(md_file))[0] content = f"# {file_name}\n\n{content}" enhanced_content = self.enhance_markdown(content) enhanced_contents.append(enhanced_content) # Merge enhanced contents with page breaks merged_content = "\n\n
\n\n".join(enhanced_contents) # Convert merged content output_path = os.path.join(output_dir, output_filename) self.converter = MarkdownToPDFConverter( output_path=output_path, page_size=page_size ) self.converter.convert_content(merged_content) return [output_path] else: # Merge without enhancement output_path = os.path.join(output_dir, output_filename) self.converter = MarkdownToPDFConverter( output_path=output_path, page_size=page_size ) self.converter.convert_multiple_files(md_files, merge=True) return [output_path] else: # Process each file individually output_files = [] for md_file in md_files: output_filename = os.path.splitext(os.path.basename(md_file))[0] + ".pdf" output_path = os.path.join(output_dir, output_filename) processed_file = self.process_file( md_file, output_path, enhance=enhance, page_size=page_size ) if processed_file: output_files.append(processed_file) return output_files # Helper functions for the Gradio interface def load_sample(): """Load a sample markdown document.""" return """# Sample Markdown Document ## Introduction This is a sample markdown document to demonstrate the capabilities of **MarkdownMuse**. You can use this as a starting point for your own documents. ## Features - Convert markdown to PDF - Support for tables and code blocks - AI enhancement options ### Code Example ```python def hello_world(): print("Hello from MarkdownMuse!") return True ``` ## Table Example | Feature | Description | Status | |---------|-------------|---------| | Markdown Conversion | Convert MD to PDF | ✅ | | AI Enhancement | Improve content with AI | ✅ | | Custom Styling | Apply custom styles | ✅ | > **Note:** This is just a sample document. Feel free to modify it or create your own! """ def process_markdown(markdown_text, page_size, font_size, font_name, margin_size, include_toc, use_ai, enhancement_instructions): """ Process markdown text and generate a PDF. Returns: Path to generated PDF file """ # Create a temporary file for the output temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") output_path = temp_file.name temp_file.close() # Initialize the agent and process the markdown agent = MarkdownToPDFAgent() # Configure converter agent.converter = MarkdownToPDFConverter( output_path=output_path, page_size=page_size, base_font_size=font_size, font_name=font_name, margins=(margin_size, margin_size, margin_size, margin_size), include_toc=include_toc ) # Get Gemini API key from environment api_key = os.environ.get('GOOGLE_API_KEY') # Setup AI enhancement if requested enhance = False if use_ai and api_key: success = agent.setup_from_gemini(api_key) enhance = success try: # Create a temporary file for the markdown content with tempfile.NamedTemporaryFile(suffix='.md', delete=False) as temp_md_file: temp_md_path = temp_md_file.name temp_md_file.write(markdown_text.encode('utf-8')) # Process the file output_file = agent.process_file( temp_md_path, output_path, enhance=enhance, enhancement_instructions=enhancement_instructions if enhancement_instructions else None, page_size=page_size.lower() ) # Remove the temporary md file os.unlink(temp_md_path) if output_file: return output_file, "✅ PDF generated successfully!" else: return None, "❌ Error generating PDF. Please check your markdown syntax." except Exception as e: logger.error(f"Error processing markdown: {e}") return None, f"❌ Error: {str(e)}" # Check if the API key is available in the environment has_api_key = bool(os.environ.get('GOOGLE_API_KEY')) # Custom CSS for styling custom_css = """ """ # Define the Gradio interface with gr.Blocks(title="MarkdownMuse", theme=gr.themes.Soft()) as demo: # Header with custom styling gr.HTML(custom_css + """

📝 MarkdownMuse

Transform your Markdown files into beautifully formatted PDFs with a single click. Professional-looking documents made simple.

""") with gr.Row(): # Input Section with gr.Column(scale=1): gr.Markdown("## 📄 Input", elem_id="section-title") markdown_input = gr.TextArea( placeholder="Enter your markdown content here...", label="Markdown Content", lines=15, elem_id="markdown-input" ) with gr.Row(elem_id="button-row"): sample_btn = gr.Button("📋 Load Sample", size="sm", elem_classes="secondary-btn") clear_btn = gr.Button("🗑️ Clear", size="sm", elem_classes="secondary-btn") with gr.Tabs(): with gr.TabItem("📝 PDF Settings", elem_classes="tab-item"): with gr.Row(): with gr.Column(scale=1): page_size = gr.Radio( ["A4", "Letter"], label="Page Size", value="A4", elem_id="page-size" ) include_toc = gr.Checkbox( value=True, label="Include Table of Contents", elem_id="include-toc" ) with gr.Column(scale=1): font_name = gr.Dropdown( ["Helvetica", "Times-Roman", "Courier"], label="Font Family", value="Helvetica", elem_id="font-name" ) font_size = gr.Slider( minimum=8, maximum=14, value=10, step=1, label="Base Font Size (pt)", elem_id="font-size" ) margin_size = gr.Slider( minimum=0.5, maximum=2.0, value=0.75, step=0.25, label="Margins (inches)", elem_id="margin-size" ) with gr.TabItem("🧠 AI Enhancement", elem_classes="tab-item"): use_ai = gr.Checkbox( value=has_api_key, label="Enable AI Enhancement", elem_id="use-ai" ) # Only show API key message if no key is in environment if not has_api_key: gr.Markdown(""" > **Note:** To use AI enhancement, add your Google Gemini API key to the Hugging Face Space secrets as `GOOGLE_API_KEY`. """, elem_id="api-key-note") else: gr.Markdown(""" > **API Key Detected!** AI enhancement is available. """, elem_id="api-key-success") enhancement_instructions = gr.TextArea( placeholder="Provide specific instructions for how the AI should enhance your markdown... (Optional)", label="Enhancement Instructions", lines=3, elem_id="enhancement-instructions" ) convert_btn = gr.Button("🔄 Convert to PDF", variant="primary", elem_classes="primary-btn") # Output Section with gr.Column(scale=1): gr.Markdown("## 📑 Output", elem_id="section-title") status = gr.Markdown("✨ Ready to convert your markdown to PDF.", elem_id="status") output_pdf = gr.File(label="Generated PDF", elem_id="output-pdf") with gr.Accordion("💡 Markdown Tips", open=False, elem_id="markdown-tips"): gr.HTML("""
✨ Basic Syntax
🔍 Advanced Features

Learn more about Markdown syntax →

""") with gr.Accordion("🚀 Features", open=False, elem_id="features"): gr.HTML("""
📄 PDF Conversion

Transform any markdown document into a professionally formatted PDF with proper styling.

🧠 AI Enhancement

Use AI to improve content formatting, fix grammar, and enhance readability.

🎨 Custom Styling

Control fonts, sizes, margins, and other style elements to match your needs.

📑 Table of Contents

Automatically generate a structured table of contents from document headings.

""") # Footer gr.HTML(""" """) # Set up event handlers sample_btn.click(load_sample, outputs=markdown_input) clear_btn.click(lambda: "", outputs=markdown_input) # Process markdown and generate PDF convert_btn.click( process_markdown, inputs=[ markdown_input, page_size, font_size, font_name, margin_size, include_toc, use_ai, enhancement_instructions ], outputs=[ output_pdf, status ] ) # Launch the app if __name__ == "__main__": try: print("Starting MarkdownMuse application...") demo.launch(server_name="0.0.0.0", server_port=7860) print("MarkdownMuse application launched successfully!") except Exception as e: print(f"ERROR LAUNCHING APP: {str(e)}") import traceback traceback.print_exc()