import gradio as gr from codeexecutor import get_majority_vote, type_check, postprocess_completion, draw_polynomial_plot import re iterations=4 import base64 from io import BytesIO # from PIL import Image # Mock function for generating predictions def get_prediction(question): return "Solve the following mathematical problem: what is the sum of polynomial 2x+3 and 3x?\n### Solution: To solve the problem of summing the polynomials \\(2x + 3\\) and \\(3x\\), we can follow these steps:\n\n1. Define the polynomials.\n2. Sum the polynomials.\n3. Simplify the resulting polynomial expression.\n\nThe sum of the polynomials \\(2x + 3\\) and \\(3x\\) is \\(\\boxed{5x + 3}\\).\n" # Function to parse the prediction to extract the answer and steps def parse_prediction(prediction): lines = prediction.strip().split('\n') answer = None steps = [] for line in lines: match = re.match(r'^\s*(?:Answer|answer)\s*[:=]\s*(.*)', line) if match: answer = match.group(1).strip() else: steps.append(line) if answer is None: answer = lines[-1].strip() steps = lines steps_text = '\n'.join(steps).strip() return answer, steps_text # Function to extract boxed answers def extract_boxed_answer(text): match = re.search(r'\\boxed\{(.*?)\}', text) if match: return match.group(1) return None # Function to perform majority voting and get steps def majority_vote_with_steps(question, num_iterations=10): all_predictions = [] all_answers = [] steps_list = [] for _ in range(num_iterations): prediction = get_prediction(question) answer, success = postprocess_completion(prediction, return_status=True, last_code_block=True) print(answer,success) if success: all_predictions.append(prediction) all_answers.append(answer) steps_list.append(prediction) else: answer, steps = parse_prediction(prediction) all_predictions.append(prediction) all_answers.append(answer) steps_list.append(steps) majority_voted_ans = get_majority_vote(all_answers) if success: expression = majority_voted_ans if type_check(expression) == "Polynomial": plotfile = draw_polynomial_plot(expression) else: plotfile = "polynomial_plot.png" # Find the steps corresponding to the majority voted answer for i, ans in enumerate(all_answers): if ans == majority_voted_ans: steps_solution = steps_list[i] answer = parse_prediction(steps_solution) break else: answer = majority_voted_ans steps_solution = "No steps found" return answer, steps_solution, plotfile # Function to handle chat-like interaction and merge plot into chat history def chat_interface(history, question): final_answer, steps_solution, plotfile = majority_vote_with_steps(question, iterations) # Convert the plot image to base64 for embedding in chat (if plot exists) if plotfile: history.append(("what is the sum of polynomial 2x+3 and 3x?", f"Answer: \n{steps_solution}")) with open(plotfile, "rb") as image_file: image_bytes = image_file.read() base64_image = base64.b64encode(image_bytes).decode("utf-8") image_data = f'' history.append(("", image_data)) else: history.append(("MathBot", f"Answer: \n{steps_solution}")) return history css = """ #math-question-textbox { font-size: 24px !important; } """ # Gradio app setup using Blocks with gr.Blocks(css=css) as interface: chatbot = gr.Chatbot(label="Chat with MathBot", elem_id="chat_history",height="70vh") math_question = gr.Textbox(label="Your Question", placeholder="Ask a math question...", elem_id="math_question") math_question.submit(chat_interface, inputs=[chatbot, math_question], outputs=[chatbot]) interface.launch()