Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import fitz # PyMuPDF for PDF processing
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
import pickle
|
6 |
+
import streamlit as st
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
from groq import Groq
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
# Load environment variables
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Initialize Groq Client
|
15 |
+
client = Groq(api_key="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")
|
16 |
+
|
17 |
+
# Load Sentence Transformer model for embeddings
|
18 |
+
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
19 |
+
|
20 |
+
# Initialize FAISS index
|
21 |
+
INDEX_FILE = "faiss_index.pkl"
|
22 |
+
|
23 |
+
def load_faiss_index():
|
24 |
+
if os.path.exists(INDEX_FILE):
|
25 |
+
with open(INDEX_FILE, "rb") as f:
|
26 |
+
return pickle.load(f)
|
27 |
+
return faiss.IndexFlatL2(384)
|
28 |
+
|
29 |
+
index = load_faiss_index()
|
30 |
+
documents = []
|
31 |
+
|
32 |
+
def extract_text_from_pdf(pdf_file):
|
33 |
+
doc = fitz.open(pdf_file)
|
34 |
+
return "\n".join([page.get_text() for page in doc])
|
35 |
+
|
36 |
+
def chunk_text(text, chunk_size=500, overlap=100):
|
37 |
+
return [text[i:i + chunk_size] for i in range(0, len(text), chunk_size - overlap)]
|
38 |
+
|
39 |
+
def add_to_faiss(text_chunks):
|
40 |
+
global index, documents
|
41 |
+
embeddings = embedding_model.encode(text_chunks)
|
42 |
+
index.add(np.array(embeddings, dtype=np.float32))
|
43 |
+
documents.extend(text_chunks)
|
44 |
+
with open(INDEX_FILE, "wb") as f:
|
45 |
+
pickle.dump(index, f)
|
46 |
+
|
47 |
+
def query_faiss(query, top_k=3):
|
48 |
+
query_embedding = embedding_model.encode([query])
|
49 |
+
_, indices = index.search(np.array(query_embedding, dtype=np.float32), top_k)
|
50 |
+
return [documents[i] for i in indices[0] if i < len(documents)]
|
51 |
+
|
52 |
+
def query_groq(prompt):
|
53 |
+
try:
|
54 |
+
chat_completion = client.chat.completions.create(
|
55 |
+
messages=[{"role": "user", "content": prompt}],
|
56 |
+
model="llama-3.3-70b-versatile"
|
57 |
+
)
|
58 |
+
return chat_completion.choices[0].message.content
|
59 |
+
except Exception as e:
|
60 |
+
return f"β οΈ Error: {str(e)}"
|
61 |
+
|
62 |
+
# Streamlit UI
|
63 |
+
st.set_page_config(page_title="RAG-based PDF Chatbot", page_icon="π", layout="wide")
|
64 |
+
|
65 |
+
st.title("π RAG-based PDF Chatbot")
|
66 |
+
st.markdown("Talk to your PDFs using AI-powered search!")
|
67 |
+
|
68 |
+
with st.sidebar:
|
69 |
+
st.subheader("π€ Upload a PDF")
|
70 |
+
uploaded_file = st.file_uploader("Drag & drop or browse", type="pdf")
|
71 |
+
|
72 |
+
if uploaded_file:
|
73 |
+
with st.spinner("Processing your PDF..."):
|
74 |
+
with open("uploaded.pdf", "wb") as f:
|
75 |
+
f.write(uploaded_file.getbuffer())
|
76 |
+
|
77 |
+
text = extract_text_from_pdf("uploaded.pdf")
|
78 |
+
text_chunks = chunk_text(text)
|
79 |
+
add_to_faiss(text_chunks)
|
80 |
+
|
81 |
+
st.sidebar.success("β
PDF uploaded and indexed!")
|
82 |
+
|
83 |
+
with st.expander("π Extracted Text Preview", expanded=False):
|
84 |
+
st.text(text[:1000] + "...")
|
85 |
+
|
86 |
+
st.markdown("---")
|
87 |
+
st.subheader("π Ask something about the document")
|
88 |
+
query = st.text_input("Type your question below:")
|
89 |
+
|
90 |
+
if query:
|
91 |
+
retrieved_texts = query_faiss(query)
|
92 |
+
|
93 |
+
if retrieved_texts:
|
94 |
+
context = "\n".join(retrieved_texts)
|
95 |
+
|
96 |
+
with st.expander("π Retrieved Context", expanded=False):
|
97 |
+
st.text(context[:1000] + "...")
|
98 |
+
|
99 |
+
response = query_groq(f"Context:\n{context}\n\nUser Query:\n{query}")
|
100 |
+
|
101 |
+
st.subheader("π¬ AI Response")
|
102 |
+
st.markdown(f"**{response}**")
|
103 |
+
else:
|
104 |
+
st.warning("β οΈ No relevant context found in the document!")
|