Spaces:
Runtime error
Runtime error
Commit
·
de7b3c0
1
Parent(s):
9cc5e70
Added new model
Browse files
app.py
CHANGED
|
@@ -18,24 +18,41 @@ logging.basicConfig(
|
|
| 18 |
MODEL_IMG_SIZE = 256
|
| 19 |
def load_model():
|
| 20 |
REPO_ID = "Podtekatel/ARCNEGAN"
|
| 21 |
-
|
|
|
|
| 22 |
|
| 23 |
-
global
|
| 24 |
-
global
|
|
|
|
|
|
|
| 25 |
|
|
|
|
| 26 |
model_path = cached_download(
|
| 27 |
-
hf_hub_url(REPO_ID,
|
| 28 |
)
|
| 29 |
-
|
| 30 |
|
| 31 |
-
|
| 32 |
-
return model
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
load_model()
|
| 35 |
|
| 36 |
-
def inference(img):
|
| 37 |
img = np.array(img)
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
out_img = Image.fromarray(out_img)
|
| 40 |
return out_img
|
| 41 |
|
|
@@ -52,11 +69,11 @@ article = "This is one of my successful experiments on style transfer. I've buil
|
|
| 52 |
"If you want to use this app or integrate this model into yours, please contact me at email '[email protected]'."
|
| 53 |
|
| 54 |
imgs_folder = 'demo'
|
| 55 |
-
examples = [[os.path.join(imgs_folder, img_filename)] for img_filename in sorted(os.listdir(imgs_folder))]
|
| 56 |
|
| 57 |
demo = gr.Interface(
|
| 58 |
fn=inference,
|
| 59 |
-
inputs=[gr.inputs.Image(type="pil")],
|
| 60 |
outputs=gr.outputs.Image(type="pil"),
|
| 61 |
title=title,
|
| 62 |
description=description,
|
|
|
|
| 18 |
MODEL_IMG_SIZE = 256
|
| 19 |
def load_model():
|
| 20 |
REPO_ID = "Podtekatel/ARCNEGAN"
|
| 21 |
+
FILENAME_OLD = "arcane_exp_203_ep_399.onnx"
|
| 22 |
+
FILENAME_NEW = "arcane_exp_206_ep_138.onnx"
|
| 23 |
|
| 24 |
+
global model_old
|
| 25 |
+
global model_new
|
| 26 |
+
global pipeline_old
|
| 27 |
+
global pipeline_new
|
| 28 |
|
| 29 |
+
# Old model
|
| 30 |
model_path = cached_download(
|
| 31 |
+
hf_hub_url(REPO_ID, FILENAME_OLD), use_auth_token=os.getenv('HF_TOKEN')
|
| 32 |
)
|
| 33 |
+
model_old = ONNXModel(model_path)
|
| 34 |
|
| 35 |
+
pipeline_old = VSNetModelPipeline(model_old, StatRetinaFaceDetector(MODEL_IMG_SIZE), background_resize=1024, no_detected_resize=1024)
|
|
|
|
| 36 |
|
| 37 |
+
# New model
|
| 38 |
+
model_path = cached_download(
|
| 39 |
+
hf_hub_url(REPO_ID, FILENAME_NEW), use_auth_token=os.getenv('HF_TOKEN')
|
| 40 |
+
)
|
| 41 |
+
model_new = ONNXModel(model_path)
|
| 42 |
+
|
| 43 |
+
pipeline_new = VSNetModelPipeline(model_new, StatRetinaFaceDetector(MODEL_IMG_SIZE), background_resize=1024,
|
| 44 |
+
no_detected_resize=1024)
|
| 45 |
+
|
| 46 |
+
return model_old, model_new
|
| 47 |
load_model()
|
| 48 |
|
| 49 |
+
def inference(img, ver):
|
| 50 |
img = np.array(img)
|
| 51 |
+
if ver == 'version 2':
|
| 52 |
+
out_img = pipeline_new(img)
|
| 53 |
+
else:
|
| 54 |
+
out_img = pipeline_old(img)
|
| 55 |
+
|
| 56 |
out_img = Image.fromarray(out_img)
|
| 57 |
return out_img
|
| 58 |
|
|
|
|
| 69 |
"If you want to use this app or integrate this model into yours, please contact me at email '[email protected]'."
|
| 70 |
|
| 71 |
imgs_folder = 'demo'
|
| 72 |
+
examples = [[os.path.join(imgs_folder, img_filename), version] for img_filename in sorted(os.listdir(imgs_folder)) for version in ['version 2']]
|
| 73 |
|
| 74 |
demo = gr.Interface(
|
| 75 |
fn=inference,
|
| 76 |
+
inputs=[gr.inputs.Image(type="pil"), gr.inputs.Radio(['version 1', 'version 2'], type="value", default='version 2', label='version')],
|
| 77 |
outputs=gr.outputs.Image(type="pil"),
|
| 78 |
title=title,
|
| 79 |
description=description,
|