Podtekatel commited on
Commit
86279bb
1 Parent(s): c974deb

Update to V2 version

Browse files
app.py CHANGED
@@ -15,17 +15,14 @@ logging.basicConfig(
15
  level=logging.INFO,
16
  datefmt='%Y-%m-%d %H:%M:%S')
17
 
18
- MODEL_IMG_SIZE = 256
19
- usage_count = 35 # Based on hugging face logs
20
  def load_model():
21
- REPO_ID = "Podtekatel/ARCNEGAN"
22
- FILENAME_OLD = "arcane_exp_203_ep_399.onnx"
23
- FILENAME_NEW = "arcane_exp_206_ep_138.onnx"
24
 
25
  global model_old
26
- global model_new
27
  global pipeline_old
28
- global pipeline_new
29
 
30
  # Old model
31
  model_path = cached_download(
@@ -35,24 +32,12 @@ def load_model():
35
 
36
  pipeline_old = VSNetModelPipeline(model_old, StatRetinaFaceDetector(MODEL_IMG_SIZE), background_resize=1024, no_detected_resize=1024)
37
 
38
- # New model
39
- model_path = cached_download(
40
- hf_hub_url(REPO_ID, FILENAME_NEW), use_auth_token=os.getenv('HF_TOKEN')
41
- )
42
- model_new = ONNXModel(model_path)
43
-
44
- pipeline_new = VSNetModelPipeline(model_new, StatRetinaFaceDetector(MODEL_IMG_SIZE), background_resize=1024,
45
- no_detected_resize=1024)
46
-
47
- return model_old, model_new
48
  load_model()
49
 
50
- def inference(img, ver):
51
  img = np.array(img)
52
- if ver == 'version 2':
53
- out_img = pipeline_new(img)
54
- else:
55
- out_img = pipeline_old(img)
56
 
57
  out_img = Image.fromarray(out_img)
58
  global usage_count
@@ -61,23 +46,23 @@ def inference(img, ver):
61
  return out_img
62
 
63
 
64
- title = "ARCNStyleTransfer"
65
  description = "Gradio Demo for Arcane Season 1 style transfer. To use it, simply upload your image, or click one of the examples to load them. Press ❤️ if you like this space!"
66
  article = "This is one of my successful experiments on style transfer. I've built my own pipeline, generator model and private dataset to train this model<br>" \
67
  "" \
68
  "" \
69
  "" \
70
  "Model pipeline which used in project is improved CartoonGAN.<br>" \
71
- "This model was trained on RTX 2080 Ti 1.5 days with batch size 7.<br>" \
72
- "Model weights 64 MB in ONNX fp32 format, infers 25 ms on GPU and 150 ms on CPU at 256x256 resolution.<br>" \
73
  "If you want to use this app or integrate this model into yours, please contact me at email '[email protected]'."
74
 
75
  imgs_folder = 'demo'
76
- examples = [[os.path.join(imgs_folder, img_filename), version] for img_filename in sorted(os.listdir(imgs_folder)) for version in ['version 2']]
77
 
78
  demo = gr.Interface(
79
  fn=inference,
80
- inputs=[gr.inputs.Image(type="pil"), gr.inputs.Radio(['version 1', 'version 2'], type="value", default='version 2', label='version')],
81
  outputs=gr.outputs.Image(type="pil"),
82
  title=title,
83
  description=description,
 
15
  level=logging.INFO,
16
  datefmt='%Y-%m-%d %H:%M:%S')
17
 
18
+ MODEL_IMG_SIZE = 512
19
+ usage_count = 0 # Based on hugging face logs
20
  def load_model():
21
+ REPO_ID = "Podtekatel/ArcaneVSK2"
22
+ FILENAME_OLD = "arcane_exp_228_ep_159_512_res_V2.onnx"
 
23
 
24
  global model_old
 
25
  global pipeline_old
 
26
 
27
  # Old model
28
  model_path = cached_download(
 
32
 
33
  pipeline_old = VSNetModelPipeline(model_old, StatRetinaFaceDetector(MODEL_IMG_SIZE), background_resize=1024, no_detected_resize=1024)
34
 
35
+ return model_old
 
 
 
 
 
 
 
 
 
36
  load_model()
37
 
38
+ def inference(img):
39
  img = np.array(img)
40
+ out_img = pipeline_old(img)
 
 
 
41
 
42
  out_img = Image.fromarray(out_img)
43
  global usage_count
 
46
  return out_img
47
 
48
 
49
+ title = "ARCNStyleTransferV2"
50
  description = "Gradio Demo for Arcane Season 1 style transfer. To use it, simply upload your image, or click one of the examples to load them. Press ❤️ if you like this space!"
51
  article = "This is one of my successful experiments on style transfer. I've built my own pipeline, generator model and private dataset to train this model<br>" \
52
  "" \
53
  "" \
54
  "" \
55
  "Model pipeline which used in project is improved CartoonGAN.<br>" \
56
+ "This model was trained on RTX 2080 Ti 3 days with batch size 7.<br>" \
57
+ "Model weights 80 MB in ONNX fp32 format, infers 100 ms on GPU and 600 ms on CPU at 512x512 resolution.<br>" \
58
  "If you want to use this app or integrate this model into yours, please contact me at email '[email protected]'."
59
 
60
  imgs_folder = 'demo'
61
+ examples = [[os.path.join(imgs_folder, img_filename)] for img_filename in sorted(os.listdir(imgs_folder))]
62
 
63
  demo = gr.Interface(
64
  fn=inference,
65
+ inputs=[gr.inputs.Image(type="pil")],
66
  outputs=gr.outputs.Image(type="pil"),
67
  title=title,
68
  description=description,
demo/IMG1.jpg DELETED
Binary file (276 kB)
 
demo/IMG2.jpg DELETED
Binary file (71.5 kB)
 
demo/IMG3.jpg DELETED
Binary file (223 kB)
 
demo/IMG4.jpg DELETED
Binary file (28.6 kB)
 
demo/gates.png ADDED
demo/jack_sparrow.jpeg ADDED
demo/kianu.jpg ADDED
demo/squid_game.jpeg ADDED