PeteBleackley commited on
Commit
58e8b0b
·
1 Parent(s): 66ccfdf

Datasets documentation

Browse files
.ipynb_checkpoints/Model visualisation-checkpoint.ipynb ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [],
3
+ "metadata": {},
4
+ "nbformat": 4,
5
+ "nbformat_minor": 5
6
+ }
DataSets.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #Datasets
2
+
3
+ We are planning to use the following datasets to train the models.
4
+
5
+ ##Base Model Training
6
+
7
+ [The British National Corpus](http://www.natcorp.ox.ac.uk/)
8
+
9
+ ##Question Answering
10
+
11
+ ##Reasoning
12
+
13
+ [Avicenna: Syllogistic Commonsense Reasoning](https://github.com/ZeinabAghahadi/Syllogistic-Commonsense-Reasoning)
14
+
15
+ ##Consistency
16
+
17
+ [Stanford Natural Language Inference Corpus](https://www.kaggle.com/datasets/stanfordu/stanford-natural-language-inference-corpus)
model.png ADDED
qarac/models/layers/HyenaLayer.py CHANGED
@@ -11,6 +11,7 @@ import keras_nlp
11
  import tensorflow
12
  import warnings
13
 
 
14
  def convolve(x,y):
15
 
16
  fx = tensorflow.vectorized_map(fft, x, warn=False)
@@ -54,6 +55,7 @@ class HyenaLayer(keras.layers.Layer):
54
  self.data_projection = None
55
  self.filters = None
56
 
 
57
  def positional_encoding(self,X):
58
  t = tensorflow.dtypes.saturate_cast(tensorflow.ragged.range(X.row_lengths()),
59
  tensorflow.float32)
@@ -90,7 +92,7 @@ class HyenaLayer(keras.layers.Layer):
90
  x = concat(x,tensorflow.zeros_like(x))
91
  f = concat(f,tensorflow.zeros_like(f))
92
  y = x[:,:,:,0]
93
- for i in range(self.stages):
94
  y = convolve(y,f[:,:,:,i])*x[:,:,:,i+1]
95
  if self.causal:
96
  for (i,n) in enumerate(X.row_lengths()):
 
11
  import tensorflow
12
  import warnings
13
 
14
+ @tensorflow.function
15
  def convolve(x,y):
16
 
17
  fx = tensorflow.vectorized_map(fft, x, warn=False)
 
55
  self.data_projection = None
56
  self.filters = None
57
 
58
+ @tensorflow.function
59
  def positional_encoding(self,X):
60
  t = tensorflow.dtypes.saturate_cast(tensorflow.ragged.range(X.row_lengths()),
61
  tensorflow.float32)
 
92
  x = concat(x,tensorflow.zeros_like(x))
93
  f = concat(f,tensorflow.zeros_like(f))
94
  y = x[:,:,:,0]
95
+ for i in tensorflow.range(self.stages):
96
  y = convolve(y,f[:,:,:,i])*x[:,:,:,i+1]
97
  if self.causal:
98
  for (i,n) in enumerate(X.row_lengths()):
scripts.py CHANGED
@@ -30,7 +30,8 @@ def train_base_model(task,filename):
30
  model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics='accuracy')
31
  model.fit(train_data,
32
  epochs=100,
33
- workers = 16)
 
34
  test_data=qarac.corpora.Batcher.Batcher(test)
35
  print(model.evaluate(test_data))
36
  model.save(filename)
 
30
  model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics='accuracy')
31
  model.fit(train_data,
32
  epochs=100,
33
+ workers = 16,
34
+ use_multiprocessing=True)
35
  test_data=qarac.corpora.Batcher.Batcher(test)
36
  print(model.evaluate(test_data))
37
  model.save(filename)