Plachta commited on
Commit
9aeb33e
·
1 Parent(s): 39c9cf7

Update ONNXVITS_infer.py

Browse files
Files changed (1) hide show
  1. ONNXVITS_infer.py +61 -0
ONNXVITS_infer.py CHANGED
@@ -91,3 +91,64 @@ class SynthesizerTrn(models.SynthesizerTrn):
91
  o = torch.from_numpy(o[0])
92
 
93
  return o, attn, y_mask, (z, z_p, m_p, logs_p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  o = torch.from_numpy(o[0])
92
 
93
  return o, attn, y_mask, (z, z_p, m_p, logs_p)
94
+
95
+ def predict_duration(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
96
+ emotion_embedding=None):
97
+ from ONNXVITS_utils import runonnx
98
+
99
+ #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
100
+ x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
101
+ x = torch.from_numpy(x)
102
+ m_p = torch.from_numpy(m_p)
103
+ logs_p = torch.from_numpy(logs_p)
104
+ x_mask = torch.from_numpy(x_mask)
105
+
106
+ if self.n_speakers > 0:
107
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
108
+ else:
109
+ g = None
110
+
111
+ #logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
112
+ logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy())
113
+ logw = torch.from_numpy(logw[0])
114
+
115
+ w = torch.exp(logw) * x_mask * length_scale
116
+ w_ceil = torch.ceil(w)
117
+ return list(w_ceil.squeeze())
118
+
119
+ def infer_with_duration(self, x, x_lengths, w_ceil, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
120
+ emotion_embedding=None):
121
+ from ONNXVITS_utils import runonnx
122
+
123
+ #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
124
+ x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
125
+ x = torch.from_numpy(x)
126
+ m_p = torch.from_numpy(m_p)
127
+ logs_p = torch.from_numpy(logs_p)
128
+ x_mask = torch.from_numpy(x_mask)
129
+
130
+ if self.n_speakers > 0:
131
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
132
+ else:
133
+ g = None
134
+ assert len(w_ceil) == x.shape[2]
135
+ w_ceil = torch.FloatTensor(w_ceil).reshape(1, 1, -1)
136
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
137
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
138
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
139
+ attn = commons.generate_path(w_ceil, attn_mask)
140
+
141
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
142
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
143
+
144
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
145
+
146
+ #z = self.flow(z_p, y_mask, g=g, reverse=True)
147
+ z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy())
148
+ z = torch.from_numpy(z[0])
149
+
150
+ #o = self.dec((z * y_mask)[:,:,:max_len], g=g)
151
+ o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy())
152
+ o = torch.from_numpy(o[0])
153
+
154
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)