Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request
|
2 |
+
from transformers import RobertaForSequenceClassification, RobertaTokenizer, RobertaConfig
|
3 |
+
import torch
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
app = Flask(__name__)
|
8 |
+
|
9 |
+
ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
|
10 |
+
config = RobertaConfig.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN)
|
11 |
+
model = RobertaForSequenceClassification.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN, config = config)
|
12 |
+
|
13 |
+
model_name = "roberta-base"
|
14 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name, map_location=torch.device('cpu'))
|
15 |
+
|
16 |
+
# function to break text into an array of sentences
|
17 |
+
def text_to_sentences(text):
|
18 |
+
re.sub(r'(?<=[.!?])(?=[^\s])', r' ', text)
|
19 |
+
return re.split(r'[.!?]', text)
|
20 |
+
|
21 |
+
# function to concatenate sentences into chunks of size 600 or less
|
22 |
+
def chunks_of_600(text, chunk_size=600):
|
23 |
+
sentences = text_to_sentences(text)
|
24 |
+
chunks = []
|
25 |
+
current_chunk = ""
|
26 |
+
for sentence in sentences:
|
27 |
+
if len(current_chunk + sentence) <= chunk_size:
|
28 |
+
current_chunk += sentence
|
29 |
+
else:
|
30 |
+
chunks.append(current_chunk)
|
31 |
+
current_chunk = sentence
|
32 |
+
chunks.append(current_chunk)
|
33 |
+
return chunks
|
34 |
+
|
35 |
+
def predict(query, device="cpu"):
|
36 |
+
tokens = tokenizer.encode(query)
|
37 |
+
all_tokens = len(tokens)
|
38 |
+
tokens = tokens[:tokenizer.model_max_length - 2]
|
39 |
+
used_tokens = len(tokens)
|
40 |
+
tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0)
|
41 |
+
mask = torch.ones_like(tokens)
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
logits = model(tokens.to(device), attention_mask=mask.to(device))[0]
|
45 |
+
probs = logits.softmax(dim=-1)
|
46 |
+
|
47 |
+
fake, real = probs.detach().cpu().flatten().numpy().tolist()
|
48 |
+
return real
|
49 |
+
|
50 |
+
def findRealProb(text):
|
51 |
+
chunksOfText = (chunks_of_600(text))
|
52 |
+
results = []
|
53 |
+
for chunk in chunksOfText:
|
54 |
+
output = predict(chunk)
|
55 |
+
results.append([output, len(chunk)])
|
56 |
+
|
57 |
+
ans = 0
|
58 |
+
for prob, length in results:
|
59 |
+
ans = ans + prob*length
|
60 |
+
realProb = ans/len(text)
|
61 |
+
return {"Real": realProb, "Fake": 1-realProb, "results": results, "text": text}
|
62 |
+
|
63 |
+
def upload_file():
|
64 |
+
if 'pdfFile' in request.files:
|
65 |
+
pdf_file = request.files['pdfFile']
|
66 |
+
text = ""
|
67 |
+
with pdfplumber.open(pdf_file) as pdf:
|
68 |
+
cnt = 0
|
69 |
+
for page in pdf.pages:
|
70 |
+
cnt+=1
|
71 |
+
text+=(page.extract_text(x_tolerance = 1))
|
72 |
+
print(text)
|
73 |
+
if cnt>5:
|
74 |
+
break
|
75 |
+
return findRealProb(text)
|
76 |
+
# return jsonify({'text': text})
|
77 |
+
else:
|
78 |
+
return {"error":'No PDF file found in request'}
|
79 |
+
|
80 |
+
|
81 |
+
demo = gr.Interface(
|
82 |
+
fn=upload_file,
|
83 |
+
inputs=gr.File(),
|
84 |
+
article = "Visit <a href = \"https://ai-content-detector.online/\">AI Content Detector</a> for better user experience!",
|
85 |
+
outputs=gr.outputs.JSON(),
|
86 |
+
interpretation="default",
|
87 |
+
|
88 |
+
demo.launch(show_api=False)
|