# my_memory_logic.py import os # Import the PipelineRunnable from pipeline.py from pipeline import pipeline_runnable from langchain.schema import BaseChatMessageHistory from langchain_community.chat_message_histories import ChatMessageHistory from langchain.runnables.history import RunnableWithMessageHistory ############################################################################### # 1) In-memory store: session_id -> ChatMessageHistory ############################################################################### store = {} # e.g., { "abc123": ChatMessageHistory(...) } def get_session_history(session_id: str) -> BaseChatMessageHistory: """ Retrieve or create a ChatMessageHistory object for the given session_id. This ensures each session_id has its own conversation history. """ if session_id not in store: store[session_id] = ChatMessageHistory() return store[session_id] ############################################################################### # 2) Create the RunnableWithMessageHistory (session-based chain) ############################################################################### # This wraps your `pipeline_runnable` so it automatically reads/writes # conversation history from get_session_history for each session. conversational_rag_chain = RunnableWithMessageHistory( pipeline_runnable, # the Runnable from pipeline.py get_session_history, # fetches or creates ChatMessageHistory by session_id input_messages_key="input", # key in the dict for user's new query history_messages_key="chat_history", # key for existing chat logs output_messages_key="answer" # key for final output ) ############################################################################### # 3) A convenience function to run a query with session-based memory ############################################################################### def run_with_session_memory(user_query: str, session_id: str) -> str: """ A helper that calls our `conversational_rag_chain` with a given session_id. Returns the final 'answer'. """ # We invoke the chain with the user query; # the chain automatically updates the session’s chat history. response = conversational_rag_chain.invoke( {"input": user_query}, config={ "configurable": { "session_id": session_id } } ) return response["answer"]