# app.py import gradio as gr from my_memory_logic import run_with_session_memory def chat_interface_fn(message, history, session_id): """ Multi-turn chat function for Gradio's ChatInterface. 'session_id' is used to store conversation across turns. """ # 1) Call run_with_session_memory with user message and session_id answer = run_with_session_memory(message, session_id) # 2) Append the turn to the 'history' so Gradio UI displays it history.append((message, answer)) # 3) Convert into message dicts for ChatInterface message_dicts = [] for user_msg, ai_msg in history: message_dicts.append({"role": "user", "content": user_msg}) message_dicts.append({"role": "assistant", "content": ai_msg}) return message_dicts, history # Define custom CSS to align messages my_chat_css = """ /* Center the container horizontally so there's some margin */ .gradio-container { margin: auto; } /* Right-align user messages */ .user .wrap { text-align: right !important; } /* Left-align assistant messages */ .assistant .wrap { text-align: left !important; } """ with gr.Blocks(css=my_chat_css) as demo: gr.Markdown("### DailyWellnessAI (User on right, Assistant on left)") session_id_box = gr.Textbox(label="Session ID", value="abc123", interactive=True) chat_interface = gr.ChatInterface( fn=lambda msg, hist: chat_interface_fn(msg, hist, session_id_box.value), title="DailyWellnessAI (Session-based Memory)", description="Ask your questions. The session_id determines your stored memory." ) demo.launch()