import os import sys import time import requests from subprocess import Popen, PIPE import threading # from huggingface_hub import hf_hub_download import gradio as gr def run_xvaserver(): try: # start the process without waiting for a response print('Running xVAServer subprocess...\n') xvaserver = Popen(['python', 'server.py'], stdout=PIPE, stderr=PIPE, universal_newlines=True) except: print('Could not run xVASynth.') sys.exit(0) # Wait for a moment to ensure the server starts up time.sleep(10) # Check if the server is running if xvaserver.poll() is not None: print("Web server failed to start.") sys.exit(0) # contact local xVASynth server; ~2 second timeout print('Attempting to connect to xVASynth...') response = requests.get('http://0.0.0.0:8008') response.raise_for_status() # If the response contains an HTTP error status code, raise an exception print('xVAServer running on port 8008') # load default voice model load_model() predicted = predict('test', 1.0) print(predicted) # Read and print stdout and stderr of the subprocess while True: output = xvaserver.stdout.readline() if output == '' and xvaserver.poll() is not None: break if output: print(output.strip()) error = xvaserver.stderr.readline() if error == '' and xvaserver.poll() is not None: break if error: print(error.strip(), file=sys.stderr) # Wait for the process to exit xvaserver.wait() def load_model(): model_name = "Pendrokar/TorchMoji" # model_path = hf_hub_download(repo_id=model_name, filename="ccby_nvidia_hifi_6670_M.pt") # model_json_path = hf_hub_download(repo_id=model_name, filename="ccby_nvidia_hifi_6670_M.json") model_path = '/tmp/hfcache/models--Pendrokar--xvapitch_nvidia_6670/snapshots/2e138a7c459fb1cb1182dd7bc66813f5325d30fd/ccby_nvidia_hifi_6670_M.pt' model_json_path = '/tmp/hfcache/models--Pendrokar--xvapitch_nvidia_6670/snapshots/2e138a7c459fb1cb1182dd7bc66813f5325d30fd/ccby_nvidia_hifi_6670_M.json' os.symlink(model_path, os.path.join('./models/ccby/', os.path.basename(model_path))) os.symlink(model_json_path, os.path.join('./models/ccby/', os.path.basename(model_json_path))) model_type = 'xVAPitch' language = 'en' data = { 'outputs': None, 'version': '3.0', 'model': 'ccby/ccby_nvidia_hifi_6670_M', 'modelType': model_type, 'base_lang': language, 'pluginsContext': '{}', } response = requests.post('http://0.0.0.0:8008/loadModel', json=data) response.raise_for_status() # If the response contains an HTTP error status code, raise an exception return def predict(input, pacing): model_type = 'xVAPitch' line = 'Test' pace = pacing if pacing else 1.0 save_path = 'test.wav' language = 'en' base_speaker_emb = [] use_sr = 0 use_cleanup = 0 data = { 'modelType': model_type, 'sequence': line, 'pace': pace, 'outfile': save_path, 'vocoder': 'n/a', 'base_lang': language, 'base_emb': base_speaker_emb, 'useSR': use_sr, 'useCleanup': use_cleanup, } response = requests.post('http://0.0.0.0:8008/synthesize', json=data) response.raise_for_status() # If the response contains an HTTP error status code, raise an exception return 22100, os.open(save_path, "rb") input_textbox = gr.Textbox( label="Input Text", lines=1, autofocus=True ) slider = gr.Slider(0.0, 2.0, value=1.0, step=0.1, label="Pacing") gradio_app = gr.Interface( predict, [ input_textbox, slider ], outputs= "audio", title="xVASynth (WIP)", ) if __name__ == "__main__": # Run the web server in a separate thread web_server_thread = threading.Thread(target=run_xvaserver) print('Starting xVAServer thread') web_server_thread.start() print('running Gradio interface') gradio_app.launch() # Wait for the web server thread to finish (shouldn't be reached in normal execution) web_server_thread.join()