Pendrokar commited on
Commit
61cef98
Β·
1 Parent(s): 5f05fba

hifigan vocoder

Browse files
resources/app/python/hifigan/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "resblock": "1",
3
+ "num_gpus": 0,
4
+ "batch_size": 46,
5
+ "learning_rate": 0.0002,
6
+ "adam_b1": 0.8,
7
+ "adam_b2": 0.99,
8
+ "lr_decay": 0.999,
9
+ "seed": 1234,
10
+
11
+ "upsample_rates": [8,8,2,2],
12
+ "upsample_kernel_sizes": [16,16,4,4],
13
+ "upsample_initial_channel": 512,
14
+ "resblock_kernel_sizes": [3,7,11],
15
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
16
+
17
+ "segment_size": 8192,
18
+ "num_mels": 80,
19
+ "num_freq": 1025,
20
+ "n_fft": 1024,
21
+ "hop_size": 256,
22
+ "win_size": 1024,
23
+
24
+ "sampling_rate": 22050,
25
+
26
+ "fmin": 0,
27
+ "fmax": 8000,
28
+ "fmax_for_loss": null,
29
+
30
+ "num_workers": 8,
31
+
32
+ "dist_config": {
33
+ "dist_backend": "nccl",
34
+ "dist_url": "tcp://localhost:54321",
35
+ "world_size": 1
36
+ }
37
+ }
resources/app/python/hifigan/hifi.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:771eaf4876485a35e25577563d390c262e23c2421e4a8c929eacfde34a5b7a60
3
+ size 55788858
resources/app/python/hifigan/model.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+
4
+ import torch
5
+ import torch.nn.functional as F
6
+ import torch.nn as nn
7
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
8
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
9
+ # from utils import init_weights, get_padding
10
+ def init_weights(m, mean=0.0, std=0.01):
11
+ classname = m.__class__.__name__
12
+ if classname.find("Conv") != -1:
13
+ m.weight.data.normal_(mean, std)
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class ResBlock1(torch.nn.Module):
21
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
22
+ super(ResBlock1, self).__init__()
23
+ self.h = h
24
+ self.convs1 = nn.ModuleList([
25
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
26
+ padding=get_padding(kernel_size, dilation[0]))),
27
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
28
+ padding=get_padding(kernel_size, dilation[1]))),
29
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
30
+ padding=get_padding(kernel_size, dilation[2])))
31
+ ])
32
+ self.convs1.apply(init_weights)
33
+
34
+ self.convs2 = nn.ModuleList([
35
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
36
+ padding=get_padding(kernel_size, 1))),
37
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
38
+ padding=get_padding(kernel_size, 1))),
39
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
40
+ padding=get_padding(kernel_size, 1)))
41
+ ])
42
+ self.convs2.apply(init_weights)
43
+
44
+ def forward(self, x):
45
+ for c1, c2 in zip(self.convs1, self.convs2):
46
+ xt = F.leaky_relu(x, LRELU_SLOPE)
47
+ xt = c1(xt)
48
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
49
+ xt = c2(xt)
50
+ x = xt + x
51
+ return x
52
+
53
+ def remove_weight_norm(self):
54
+ for l in self.convs1:
55
+ remove_weight_norm(l)
56
+ for l in self.convs2:
57
+ remove_weight_norm(l)
58
+
59
+
60
+ class ResBlock2(torch.nn.Module):
61
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
62
+ super(ResBlock2, self).__init__()
63
+ self.h = h
64
+ self.convs = nn.ModuleList([
65
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
66
+ padding=get_padding(kernel_size, dilation[0]))),
67
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
68
+ padding=get_padding(kernel_size, dilation[1])))
69
+ ])
70
+ self.convs.apply(init_weights)
71
+
72
+ def forward(self, x):
73
+ for c in self.convs:
74
+ xt = F.leaky_relu(x, LRELU_SLOPE)
75
+ xt = c(xt)
76
+ x = xt + x
77
+ return x
78
+
79
+ def remove_weight_norm(self):
80
+ for l in self.convs:
81
+ remove_weight_norm(l)
82
+
83
+
84
+ class Generator(torch.nn.Module):
85
+ def __init__(self, h):
86
+ super(Generator, self).__init__()
87
+ self.h = h
88
+ self.num_kernels = len(h.resblock_kernel_sizes)
89
+ self.num_upsamples = len(h.upsample_rates)
90
+ self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
91
+ resblock = ResBlock1 if h.resblock == '1' else ResBlock2
92
+
93
+ self.ups = nn.ModuleList()
94
+ for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
95
+ self.ups.append(weight_norm(
96
+ ConvTranspose1d(h.upsample_initial_channel//(2**i), h.upsample_initial_channel//(2**(i+1)),
97
+ k, u, padding=(k-u)//2)))
98
+
99
+ self.resblocks = nn.ModuleList()
100
+ for i in range(len(self.ups)):
101
+ ch = h.upsample_initial_channel//(2**(i+1))
102
+ for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
103
+ self.resblocks.append(resblock(h, ch, k, d))
104
+
105
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
106
+ self.ups.apply(init_weights)
107
+ self.conv_post.apply(init_weights)
108
+
109
+ def forward(self, x):
110
+ x = self.conv_pre(x)
111
+ for i in range(self.num_upsamples):
112
+ x = F.leaky_relu(x, LRELU_SLOPE)
113
+ x = self.ups[i](x)
114
+ xs = None
115
+ for j in range(self.num_kernels):
116
+ if xs is None:
117
+ xs = self.resblocks[i*self.num_kernels+j](x)
118
+ else:
119
+ xs += self.resblocks[i*self.num_kernels+j](x)
120
+ x = xs / self.num_kernels
121
+ x = F.leaky_relu(x)
122
+ x = self.conv_post(x)
123
+ x = torch.tanh(x)
124
+
125
+ return x
126
+
127
+ def remove_weight_norm(self):
128
+ print('Removing weight norm...')
129
+ for l in self.ups:
130
+ remove_weight_norm(l)
131
+ for l in self.resblocks:
132
+ l.remove_weight_norm()
133
+ remove_weight_norm(self.conv_pre)
134
+ remove_weight_norm(self.conv_post)
135
+
136
+
137
+ class DiscriminatorP(torch.nn.Module):
138
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
139
+ super(DiscriminatorP, self).__init__()
140
+ self.period = period
141
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
142
+ self.convs = nn.ModuleList([
143
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
144
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
145
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
146
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
147
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
148
+ ])
149
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
150
+
151
+ def forward(self, x):
152
+ fmap = []
153
+
154
+ # 1d to 2d
155
+ b, c, t = x.shape
156
+ if t % self.period != 0: # pad first
157
+ n_pad = self.period - (t % self.period)
158
+ x = F.pad(x, (0, n_pad), "reflect")
159
+ t = t + n_pad
160
+ x = x.view(b, c, t // self.period, self.period)
161
+
162
+ for l in self.convs:
163
+ x = l(x)
164
+ x = F.leaky_relu(x, LRELU_SLOPE)
165
+ fmap.append(x)
166
+ x = self.conv_post(x)
167
+ fmap.append(x)
168
+ x = torch.flatten(x, 1, -1)
169
+
170
+ return x, fmap
171
+
172
+
173
+ class MultiPeriodDiscriminator(torch.nn.Module):
174
+ def __init__(self):
175
+ super(MultiPeriodDiscriminator, self).__init__()
176
+ self.discriminators = nn.ModuleList([
177
+ DiscriminatorP(2),
178
+ DiscriminatorP(3),
179
+ DiscriminatorP(5),
180
+ DiscriminatorP(7),
181
+ DiscriminatorP(11),
182
+ ])
183
+
184
+ def forward(self, y, y_hat):
185
+ y_d_rs = []
186
+ y_d_gs = []
187
+ fmap_rs = []
188
+ fmap_gs = []
189
+ for i, d in enumerate(self.discriminators):
190
+ y_d_r, fmap_r = d(y)
191
+ y_d_g, fmap_g = d(y_hat)
192
+ y_d_rs.append(y_d_r)
193
+ fmap_rs.append(fmap_r)
194
+ y_d_gs.append(y_d_g)
195
+ fmap_gs.append(fmap_g)
196
+
197
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
198
+
199
+
200
+ class DiscriminatorS(torch.nn.Module):
201
+ def __init__(self, use_spectral_norm=False):
202
+ super(DiscriminatorS, self).__init__()
203
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
204
+ self.convs = nn.ModuleList([
205
+ norm_f(Conv1d(1, 128, 15, 1, padding=7)),
206
+ norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
207
+ norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
208
+ norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
209
+ norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
210
+ norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
211
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
212
+ ])
213
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
214
+
215
+ def forward(self, x):
216
+ fmap = []
217
+ for l in self.convs:
218
+ x = l(x)
219
+ x = F.leaky_relu(x, LRELU_SLOPE)
220
+ fmap.append(x)
221
+ x = self.conv_post(x)
222
+ fmap.append(x)
223
+ x = torch.flatten(x, 1, -1)
224
+
225
+ return x, fmap
226
+
227
+
228
+ class MultiScaleDiscriminator(torch.nn.Module):
229
+ def __init__(self):
230
+ super(MultiScaleDiscriminator, self).__init__()
231
+ self.discriminators = nn.ModuleList([
232
+ DiscriminatorS(use_spectral_norm=True),
233
+ DiscriminatorS(),
234
+ DiscriminatorS(),
235
+ ])
236
+ self.meanpools = nn.ModuleList([
237
+ AvgPool1d(4, 2, padding=2),
238
+ AvgPool1d(4, 2, padding=2)
239
+ ])
240
+
241
+ def forward(self, y, y_hat):
242
+ y_d_rs = []
243
+ y_d_gs = []
244
+ fmap_rs = []
245
+ fmap_gs = []
246
+ for i, d in enumerate(self.discriminators):
247
+ if i != 0:
248
+ y = self.meanpools[i-1](y)
249
+ y_hat = self.meanpools[i-1](y_hat)
250
+ y_d_r, fmap_r = d(y)
251
+ y_d_g, fmap_g = d(y_hat)
252
+ y_d_rs.append(y_d_r)
253
+ fmap_rs.append(fmap_r)
254
+ y_d_gs.append(y_d_g)
255
+ fmap_gs.append(fmap_g)
256
+
257
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
258
+
259
+
260
+ def feature_loss(fmap_r, fmap_g):
261
+ loss = 0
262
+ for dr, dg in zip(fmap_r, fmap_g):
263
+ for rl, gl in zip(dr, dg):
264
+ loss += torch.mean(torch.abs(rl - gl))
265
+
266
+ return loss*2
267
+
268
+
269
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
270
+ loss = 0
271
+ r_losses = []
272
+ g_losses = []
273
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
274
+ r_loss = torch.mean((1-dr)**2)
275
+ g_loss = torch.mean(dg**2)
276
+ loss += (r_loss + g_loss)
277
+ r_losses.append(r_loss.item())
278
+ g_losses.append(g_loss.item())
279
+
280
+ return loss, r_losses, g_losses
281
+
282
+
283
+ def generator_loss(disc_outputs):
284
+ loss = 0
285
+ gen_losses = []
286
+ for dg in disc_outputs:
287
+ l = torch.mean((1-dg)**2)
288
+ gen_losses.append(l)
289
+ loss += l
290
+
291
+ return loss, gen_losses
292
+
293
+
294
+
295
+
296
+ # from python.hifigan.hifi_gan import Generator
297
+
298
+ class AttrDict(dict):
299
+ def __init__(self, *args, **kwargs):
300
+ super(AttrDict, self).__init__(*args, **kwargs)
301
+ self.__dict__ = self
302
+
303
+ class HiFi_GAN(object):
304
+ def __init__(self, logger, PROD, device, models_manager):
305
+ super(HiFi_GAN, self).__init__()
306
+
307
+ self.logger = logger
308
+ self.PROD = PROD
309
+ self.models_manager = models_manager
310
+ self.device = device
311
+ self.ckpt_path = None
312
+
313
+ config_file = os.path.join(f'{"./resources/app" if self.PROD else "."}/python/hifigan/config.json')
314
+ with open(config_file) as f:
315
+ data = f.read()
316
+ json_config = json.loads(data)
317
+ h = AttrDict(json_config)
318
+
319
+ self.model = Generator(h).to(self.device)
320
+ self.isReady = True
321
+
322
+
323
+ def load_state_dict (self, ckpt_path, sd):
324
+ self.ckpt_path = ckpt_path
325
+ self.model.load_state_dict(sd["generator"])
326
+
327
+ def set_device (self, device):
328
+ self.device = device
329
+ self.model = self.model.to(device)
330
+ self.model.device = device