defaults: - _self_ - model: base - override hydra/job_logging: custom-no-rank.yaml hydra: run: dir: ../output/${exp_id}/${dataset} output_subdir: ${now:%Y-%m-%d_%H-%M-%S}-hydra amp: False weights: pretrained_models/matanyone.pth # default (can be modified from outside) output_dir: null # defaults to run_dir; specify this to override flip_aug: False # maximum shortest side of the input; -1 means no resizing # With eval_vos.py, we usually just use the dataset's size (resizing done in dataloader) # this parameter is added for the sole purpose for the GUI in the current codebase # InferenceCore will downsize the input and restore the output to the original size if needed # if you are using this code for some other project, you can also utilize this parameter max_internal_size: -1 # these parameters, when set, override the dataset's default; useful for debugging save_all: True use_all_masks: False use_long_term: False mem_every: 5 # only relevant when long_term is not enabled max_mem_frames: 5 # only relevant when long_term is enabled long_term: count_usage: True max_mem_frames: 10 min_mem_frames: 5 num_prototypes: 128 max_num_tokens: 10000 buffer_tokens: 2000 top_k: 30 stagger_updates: 5 chunk_size: -1 # number of objects to process in parallel; -1 means unlimited save_scores: False save_aux: False visualize: False