import gradio as gr import requests import io from PIL import Image import json import os import logging logging.basicConfig(level=logging.DEBUG) with open('loras.json', 'r') as f: loras = json.load(f) def update_selection(selected_state: gr.SelectData): logging.debug(f"Inside update_selection, selected_state: {selected_state}") selected_lora_index = selected_state.index # Changed this line selected_lora = loras[selected_lora_index] new_placeholder = f"Type a prompt for {selected_lora['title']}" return ( gr.update(placeholder=new_placeholder), selected_state ) def run_lora(prompt, selected_state, progress=gr.Progress(track_tqdm=True)): logging.debug(f"Inside run_lora, selected_state: {selected_state}") if not selected_state: logging.error("selected_state is None or empty.") raise gr.Error("You must select a LoRA") selected_lora_index = selected_state.index # Changed this line selected_lora = loras[selected_lora_index] api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}" trigger_word = selected_lora["trigger_word"] token = os.getenv("API_TOKEN") payload = {"inputs": f"{prompt} {trigger_word}"} headers = {"Authorization": f"Bearer {token}"} # Add a print statement to display the API request print(f"API Request: {api_url}") print(f"API Headers: {headers}") print(f"API Payload: {payload}") response = requests.post(api_url, headers=headers, json=payload) if response.status_code == 200: return Image.open(io.BytesIO(response.content)) else: logging.error(f"API Error: {response.status_code}") raise gr.Error("API Error: Unable to fetch the image.") # Raise a Gradio error here with gr.Blocks(css="custom.css") as app: title = gr.HTML("