import os import gradio as gr from scipy.io.wavfile import write import subprocess from audio_separator import Separator # Ensure this is correctly implemented def inference(audio): os.makedirs("out", exist_ok=True) audio_path = 'test.wav' write(audio_path, audio[0], audio[1]) try: # Using subprocess.run for better control command = f"python3 -m demucs.separate -n htdemucs_6s -d cpu {audio_path} -o out" process = subprocess.run(command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) print("Demucs script output:", process.stdout.decode()) except subprocess.CalledProcessError as e: print("Error in Demucs script:", e.stderr.decode()) return None try: # Separating the stems using your custom separator separator = Separator("./out/htdemucs_6s/test/vocals.wav", model_name='UVR_MDXNET_KARA_2', use_cuda=False, output_format='mp3') primary_stem_path, secondary_stem_path = separator.separate() except Exception as e: print("Error in custom separation:", str(e)) return None # Collecting all file paths files = [f"./out/htdemucs_6s/test/{stem}.wav" for stem in ["vocals", "bass", "drums", "other", "piano", "guitar"]] files.extend([secondary_stem_path,primary_stem_path ]) # Check if files exist existing_files = [file for file in files if os.path.isfile(file)] if not existing_files: print("No files were created.") return None return existing_files # Gradio Interface title = "Source Separation Demo" description = "Music Source Separation in the Waveform Domain. To use it, simply upload your audio." gr.Interface( inference, gr.components.Audio(type="numpy", label="Input"), [gr.components.Audio(type="filepath", label=stem) for stem in ["Full Vocals","Bass", "Drums", "Other", "Piano", "Guitar", "Lead Vocals", "Chorus" ]], title=title, description=description, ).launch()