# import gradio as gr # from huggingface_hub import InferenceClient # """ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference # """ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # def respond( # message, # history: list[tuple[str, str]], # system_message, # max_tokens, # temperature, # top_p, # ): # messages = [{"role": "system", "content": system_message}] # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # token = message.choices[0].delta.content # response += token # yield response # """ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) # if __name__ == "__main__": # demo.launch() from PIL import Image import base64 import io import gradio as gr from huggingface_hub import InferenceClient import requests # Function to convert image to base64 def image_to_base64(image: Image): buffered = io.BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") # Function to respond to input def respond(message: str, image: Image): # Convert image to base64 image_base64 = image_to_base64(image) # Initialize the Hugging Face client client = InferenceClient("your_huggingface_model") try: # Call the text-to-image method response_data = client.text_to_image(images=image_base64, prompt=message) # Convert the response data (image) into a PIL Image image_response = Image.open(io.BytesIO(response_data)) # Format the response in the required 'messages' format response_message = { 'role': 'assistant', # Assuming the response is from the assistant 'content': image_response } return response_message except Exception as e: return {"role": "assistant", "content": str(e)} # Define the Gradio interface def create_interface(): with gr.Blocks() as demo: chatbot = gr.Chatbot(type='messages') # 'messages' format for chatbot message_input = gr.Textbox() image_input = gr.Image(type='pil') # Image input as PIL image # Define the interaction message_input.submit(respond, inputs=[message_input, image_input], outputs=[chatbot]) return demo # Launch the interface if __name__ == "__main__": create_interface().launch(share=True) # Set share=True if you want to share the link publicly