Pavithiran commited on
Commit
1028c33
1 Parent(s): 2a372d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -10
app.py CHANGED
@@ -1,11 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
 
10
  def respond(
11
  message,
@@ -14,7 +80,9 @@ def respond(
14
  max_tokens,
15
  temperature,
16
  top_p,
 
17
  ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
  for val in history:
@@ -25,24 +93,27 @@ def respond(
25
 
26
  messages.append({"role": "user", "content": message})
27
 
 
 
 
 
 
 
28
  response = ""
29
 
30
- for message in client.chat_completion(
31
  messages,
 
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
- token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
@@ -56,9 +127,10 @@ demo = gr.ChatInterface(
56
  step=0.05,
57
  label="Top-p (nucleus sampling)",
58
  ),
 
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ # def respond(
11
+ # message,
12
+ # history: list[tuple[str, str]],
13
+ # system_message,
14
+ # max_tokens,
15
+ # temperature,
16
+ # top_p,
17
+ # ):
18
+ # messages = [{"role": "system", "content": system_message}]
19
+
20
+ # for val in history:
21
+ # if val[0]:
22
+ # messages.append({"role": "user", "content": val[0]})
23
+ # if val[1]:
24
+ # messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ # messages.append({"role": "user", "content": message})
27
+
28
+ # response = ""
29
+
30
+ # for message in client.chat_completion(
31
+ # messages,
32
+ # max_tokens=max_tokens,
33
+ # stream=True,
34
+ # temperature=temperature,
35
+ # top_p=top_p,
36
+ # ):
37
+ # token = message.choices[0].delta.content
38
+
39
+ # response += token
40
+ # yield response
41
+
42
+
43
+ # """
44
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ # """
46
+ # demo = gr.ChatInterface(
47
+ # respond,
48
+ # additional_inputs=[
49
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ # gr.Slider(
53
+ # minimum=0.1,
54
+ # maximum=1.0,
55
+ # value=0.95,
56
+ # step=0.05,
57
+ # label="Top-p (nucleus sampling)",
58
+ # ),
59
+ # ],
60
+ # )
61
+
62
+
63
+ # if __name__ == "__main__":
64
+ # demo.launch()
65
+
66
  import gradio as gr
67
  from huggingface_hub import InferenceClient
68
+ from PIL import Image
69
+ import io
70
 
71
  """
72
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
73
  """
74
+ client = InferenceClient("meta-llama/Llama-3.2-11B-Vision-Instruct")
 
75
 
76
  def respond(
77
  message,
 
80
  max_tokens,
81
  temperature,
82
  top_p,
83
+ image: Image
84
  ):
85
+ # Prepare messages
86
  messages = [{"role": "system", "content": system_message}]
87
 
88
  for val in history:
 
93
 
94
  messages.append({"role": "user", "content": message})
95
 
96
+ # Convert the image to bytes for HuggingFace API processing
97
+ image_bytes = io.BytesIO()
98
+ image.save(image_bytes, format='PNG')
99
+ image_bytes.seek(0)
100
+
101
+ # Make the API call with the image and messages
102
  response = ""
103
 
104
+ for result in client.chat_completion(
105
  messages,
106
+ image=image_bytes,
107
  max_tokens=max_tokens,
108
  stream=True,
109
  temperature=temperature,
110
  top_p=top_p,
111
  ):
112
+ token = result.choices[0].delta.content
 
113
  response += token
114
  yield response
115
 
116
+ # Gradio demo for ChatInterface with image support
 
 
 
117
  demo = gr.ChatInterface(
118
  respond,
119
  additional_inputs=[
 
127
  step=0.05,
128
  label="Top-p (nucleus sampling)",
129
  ),
130
+ gr.Image(type="pil", label="Upload an Image"), # Image input for vision tasks
131
  ],
132
  )
133
 
 
134
  if __name__ == "__main__":
135
  demo.launch()
136
+