import gradio as gr from output_beautify import * import pandas as pd from load_data import * import os from gingerit import * #os.system("pip install git+https://github.com/openai/whisper.git") #import whisper #model = whisper.load_model("small") #current_size = 'small' hf_writer = gr.HuggingFaceDatasetSaver('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', "Pavankalyan/chitti_data") ''' def inference(audio): audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(model.device) _, probs = model.detect_language(mel) options = whisper.DecodingOptions(fp16 = False) result = whisper.decode(model, mel, options) return result.text ''' def chitti(query): re_table = search(query) answers_re_table = [re_table[i][0] for i in range(0,5)] answer_links = [re_table[i][3] for i in range(0,5)] sorted_indices = sorted(range(len(answers_re_table)), key=lambda k: len(answers_re_table[k])) repeated_answers_indices =list() for i in range(4): if answers_re_table[sorted_indices[i]] in answers_re_table[sorted_indices[i+1]]: repeated_answers_indices.append(sorted_indices[i]) for idx in repeated_answers_indices: answers_re_table.pop(idx) answer_links.pop(idx) #return [res1,answers_re_table[0],res2,answers_re_table[1]] return [runGinger(answers_re_table[0]),answer_links[0],runGinger(answers_re_table[1]),answer_links[1]] #return [re_table[0][0],re_table[0][3],re_table[1][0],re_table[1][3]] demo = gr.Interface( fn=chitti, inputs=["text"], #inputs=[gr.inputs.Audio(source="microphone", type="filepath", label="Record your audio")], outputs=["text","text","text","text"], allow_flagging = "manual", flagging_options = ["0","1","None"], flagging_callback=hf_writer ) demo.launch()