import gradio as gr import os from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain #from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_huggingface import HuggingFaceEmbeddings from langchain_community.llms import HuggingFacePipeline from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory import spaces from pathlib import Path import chromadb from unidecode import unidecode import os from huggingface_hub import login import torch from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch import re # List of models list_llm = [ "mistralai/Mistral-7B-Instruct-v0.2", "HuggingFaceH4/zephyr-7b-beta", "microsoft/phi-2", "TinyLlama/TinyLlama-1.1B-Chat-v1.0", # Add more GPU-compatible models here ] list_llm_simple = [os.path.basename(llm) for llm in list_llm] @spaces.GPU @spaces.GPU def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size = chunk_size, chunk_overlap = chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database def create_db(splits, collection_name): # Set CUDA_VISIBLE_DEVICES if GPU is available if torch.cuda.is_available(): os.environ["CUDA_VISIBLE_DEVICES"] = "0" embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): progress(0.1, desc="Initializing HF tokenizer...") # Retrieve the Hugging Face token from environment variables hf_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN") if not hf_token: raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.") # Log in to Hugging Face login(token=hf_token) # Initialize tokenizer and model with the token tokenizer = AutoTokenizer.from_pretrained(llm_model, use_auth_token=hf_token) progress(0.3, desc="Loading model...") try: model = AutoModelForCausalLM.from_pretrained( llm_model, use_auth_token=hf_token, torch_dtype=torch.float16, device_map="auto" ) except RuntimeError as e: if "CUDA out of memory" in str(e): raise gr.Error("GPU memory exceeded. Try a smaller model or reduce batch size.") else: raise e progress(0.5, desc="Initializing HF pipeline...") pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto", max_new_tokens=max_tokens, do_sample=True, top_k=top_k, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id ) llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature}) progress(0.75, desc="Defining buffer memory...") memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() progress(0.8, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Done!") return qa_chain def create_collection_name(filepath): collection_name = Path(filepath).stem collection_name = collection_name.replace(" ","-") collection_name = unidecode(collection_name) collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) collection_name = collection_name[:50] if len(collection_name) < 3: collection_name = collection_name + 'xyz' if not collection_name[0].isalnum(): collection_name = 'A' + collection_name[1:] if not collection_name[-1].isalnum(): collection_name = collection_name[:-1] + 'Z' return collection_name def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] progress(0.1, desc="Creating collection name...") collection_name = create_collection_name(list_file_path[0]) progress(0.25, desc="Loading document...") doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) progress(0.5, desc="Generating vector database...") vector_db = create_db(doc_splits, collection_name) progress(0.9, desc="Done!") return vector_db, collection_name, "Complete!" def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm_name = list_llm[llm_option] qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "Complete!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """

GPU-Accelerated PDF-based Chatbot

Ask any questions about your PDF documents

""") gr.Markdown( """Note: This AI assistant uses GPU acceleration for faster processing. It performs retrieval-augmented generation (RAG) from your PDF documents using Langchain and open-source LLMs. The chatbot takes past questions into account and includes document references.""") with gr.Tab("Step 1 - Upload PDF"): document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") with gr.Tab("Step 2 - Process document"): db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database") with gr.Accordion("Advanced options - Document text splitter", open=False): slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) db_progress = gr.Textbox(label="Vector database initialization", value="None") db_btn = gr.Button("Generate vector database") with gr.Tab("Step 3 - Initialize QA chain"): llm_btn = gr.Radio(list_llm_simple, label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model") with gr.Accordion("Advanced options - LLM model", open=False): slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True) slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True) slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True) llm_progress = gr.Textbox(value="None",label="QA chain initialization") qachain_btn = gr.Button("Initialize Question Answering chain") with gr.Tab("Step 4 - Chatbot"): chatbot = gr.Chatbot(height=300) with gr.Accordion("Advanced - Document references", open=False): doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) source1_page = gr.Number(label="Page", scale=1) doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) source2_page = gr.Number(label="Page", scale=1) doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) source3_page = gr.Number(label="Page", scale=1) msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True) submit_btn = gr.Button("Submit message") clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation") # Preprocessing events db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress]) qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False) # Chatbot events msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False) submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False) clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False) demo.queue().launch(debug=True) if __name__ == "__main__": demo()