# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # The gca code was heavily based on https://github.com/Yaoyi-Li/GCA-Matting # and https://github.com/open-mmlab/mmediting import paddle import paddle.nn as nn import paddle.nn.functional as F from paddleseg.cvlibs import manager, param_init from paddleseg.utils import utils from ppmatting.models.layers import GuidedCxtAtten class ResNet_D(nn.Layer): def __init__(self, input_channels, layers, late_downsample=False, pretrained=None): super().__init__() self.pretrained = pretrained self._norm_layer = nn.BatchNorm self.inplanes = 64 self.late_downsample = late_downsample self.midplanes = 64 if late_downsample else 32 self.start_stride = [1, 2, 1, 2] if late_downsample else [2, 1, 2, 1] self.conv1 = nn.utils.spectral_norm( nn.Conv2D( input_channels, 32, kernel_size=3, stride=self.start_stride[0], padding=1, bias_attr=False)) self.conv2 = nn.utils.spectral_norm( nn.Conv2D( 32, self.midplanes, kernel_size=3, stride=self.start_stride[1], padding=1, bias_attr=False)) self.conv3 = nn.utils.spectral_norm( nn.Conv2D( self.midplanes, self.inplanes, kernel_size=3, stride=self.start_stride[2], padding=1, bias_attr=False)) self.bn1 = self._norm_layer(32) self.bn2 = self._norm_layer(self.midplanes) self.bn3 = self._norm_layer(self.inplanes) self.activation = nn.ReLU() self.layer1 = self._make_layer( BasicBlock, 64, layers[0], stride=self.start_stride[3]) self.layer2 = self._make_layer(BasicBlock, 128, layers[1], stride=2) self.layer3 = self._make_layer(BasicBlock, 256, layers[2], stride=2) self.layer_bottleneck = self._make_layer( BasicBlock, 512, layers[3], stride=2) self.init_weight() def _make_layer(self, block, planes, block_num, stride=1): if block_num == 0: return nn.Sequential(nn.Identity()) norm_layer = self._norm_layer downsample = None if stride != 1: downsample = nn.Sequential( nn.AvgPool2D(2, stride), nn.utils.spectral_norm( conv1x1(self.inplanes, planes * block.expansion)), norm_layer(planes * block.expansion), ) elif self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.utils.spectral_norm( conv1x1(self.inplanes, planes * block.expansion, stride)), norm_layer(planes * block.expansion), ) layers = [block(self.inplanes, planes, stride, downsample, norm_layer)] self.inplanes = planes * block.expansion for _ in range(1, block_num): layers.append(block(self.inplanes, planes, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.activation(x) x = self.conv2(x) x = self.bn2(x) x1 = self.activation(x) # N x 32 x 256 x 256 x = self.conv3(x1) x = self.bn3(x) x2 = self.activation(x) # N x 64 x 128 x 128 x3 = self.layer1(x2) # N x 64 x 128 x 128 x4 = self.layer2(x3) # N x 128 x 64 x 64 x5 = self.layer3(x4) # N x 256 x 32 x 32 x = self.layer_bottleneck(x5) # N x 512 x 16 x 16 return x, (x1, x2, x3, x4, x5) def init_weight(self): for layer in self.sublayers(): if isinstance(layer, nn.Conv2D): if hasattr(layer, "weight_orig"): param = layer.weight_orig else: param = layer.weight param_init.xavier_uniform(param) elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)): param_init.constant_init(layer.weight, value=1.0) param_init.constant_init(layer.bias, value=0.0) elif isinstance(layer, BasicBlock): param_init.constant_init(layer.bn2.weight, value=0.0) if self.pretrained is not None: utils.load_pretrained_model(self, self.pretrained) @manager.MODELS.add_component class ResShortCut_D(ResNet_D): def __init__(self, input_channels, layers, late_downsample=False, pretrained=None): super().__init__( input_channels, layers, late_downsample=late_downsample, pretrained=pretrained) self.shortcut_inplane = [input_channels, self.midplanes, 64, 128, 256] self.shortcut_plane = [32, self.midplanes, 64, 128, 256] self.shortcut = nn.LayerList() for stage, inplane in enumerate(self.shortcut_inplane): self.shortcut.append( self._make_shortcut(inplane, self.shortcut_plane[stage])) def _make_shortcut(self, inplane, planes): return nn.Sequential( nn.utils.spectral_norm( nn.Conv2D( inplane, planes, kernel_size=3, padding=1, bias_attr=False)), nn.ReLU(), self._norm_layer(planes), nn.utils.spectral_norm( nn.Conv2D( planes, planes, kernel_size=3, padding=1, bias_attr=False)), nn.ReLU(), self._norm_layer(planes)) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.activation(out) out = self.conv2(out) out = self.bn2(out) x1 = self.activation(out) # N x 32 x 256 x 256 out = self.conv3(x1) out = self.bn3(out) out = self.activation(out) x2 = self.layer1(out) # N x 64 x 128 x 128 x3 = self.layer2(x2) # N x 128 x 64 x 64 x4 = self.layer3(x3) # N x 256 x 32 x 32 out = self.layer_bottleneck(x4) # N x 512 x 16 x 16 fea1 = self.shortcut[0](x) # input image and trimap fea2 = self.shortcut[1](x1) fea3 = self.shortcut[2](x2) fea4 = self.shortcut[3](x3) fea5 = self.shortcut[4](x4) return out, { 'shortcut': (fea1, fea2, fea3, fea4, fea5), 'image': x[:, :3, ...] } @manager.MODELS.add_component class ResGuidedCxtAtten(ResNet_D): def __init__(self, input_channels, layers, late_downsample=False, pretrained=None): super().__init__( input_channels, layers, late_downsample=late_downsample, pretrained=pretrained) self.input_channels = input_channels self.shortcut_inplane = [input_channels, self.midplanes, 64, 128, 256] self.shortcut_plane = [32, self.midplanes, 64, 128, 256] self.shortcut = nn.LayerList() for stage, inplane in enumerate(self.shortcut_inplane): self.shortcut.append( self._make_shortcut(inplane, self.shortcut_plane[stage])) self.guidance_head = nn.Sequential( nn.Pad2D( 1, mode="reflect"), nn.utils.spectral_norm( nn.Conv2D( 3, 16, kernel_size=3, padding=0, stride=2, bias_attr=False)), nn.ReLU(), self._norm_layer(16), nn.Pad2D( 1, mode="reflect"), nn.utils.spectral_norm( nn.Conv2D( 16, 32, kernel_size=3, padding=0, stride=2, bias_attr=False)), nn.ReLU(), self._norm_layer(32), nn.Pad2D( 1, mode="reflect"), nn.utils.spectral_norm( nn.Conv2D( 32, 128, kernel_size=3, padding=0, stride=2, bias_attr=False)), nn.ReLU(), self._norm_layer(128)) self.gca = GuidedCxtAtten(128, 128) self.init_weight() def init_weight(self): for layer in self.sublayers(): if isinstance(layer, nn.Conv2D): initializer = nn.initializer.XavierUniform() if hasattr(layer, "weight_orig"): param = layer.weight_orig else: param = layer.weight initializer(param, param.block) elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)): param_init.constant_init(layer.weight, value=1.0) param_init.constant_init(layer.bias, value=0.0) elif isinstance(layer, BasicBlock): param_init.constant_init(layer.bn2.weight, value=0.0) if self.pretrained is not None: utils.load_pretrained_model(self, self.pretrained) def _make_shortcut(self, inplane, planes): return nn.Sequential( nn.utils.spectral_norm( nn.Conv2D( inplane, planes, kernel_size=3, padding=1, bias_attr=False)), nn.ReLU(), self._norm_layer(planes), nn.utils.spectral_norm( nn.Conv2D( planes, planes, kernel_size=3, padding=1, bias_attr=False)), nn.ReLU(), self._norm_layer(planes)) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.activation(out) out = self.conv2(out) out = self.bn2(out) x1 = self.activation(out) # N x 32 x 256 x 256 out = self.conv3(x1) out = self.bn3(out) out = self.activation(out) im_fea = self.guidance_head( x[:, :3, ...]) # downsample origin image and extract features if self.input_channels == 6: unknown = F.interpolate( x[:, 4:5, ...], scale_factor=1 / 8, mode='nearest') else: unknown = x[:, 3:, ...].equal(paddle.to_tensor([1.])) unknown = paddle.cast(unknown, dtype='float32') unknown = F.interpolate(unknown, scale_factor=1 / 8, mode='nearest') x2 = self.layer1(out) # N x 64 x 128 x 128 x3 = self.layer2(x2) # N x 128 x 64 x 64 x3 = self.gca(im_fea, x3, unknown) # contextual attention x4 = self.layer3(x3) # N x 256 x 32 x 32 out = self.layer_bottleneck(x4) # N x 512 x 16 x 16 fea1 = self.shortcut[0](x) # input image and trimap fea2 = self.shortcut[1](x1) fea3 = self.shortcut[2](x2) fea4 = self.shortcut[3](x3) fea5 = self.shortcut[4](x4) return out, { 'shortcut': (fea1, fea2, fea3, fea4, fea5), 'image_fea': im_fea, 'unknown': unknown, } class BasicBlock(nn.Layer): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, norm_layer=None): super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = nn.utils.spectral_norm(conv3x3(inplanes, planes, stride)) self.bn1 = norm_layer(planes) self.activation = nn.ReLU() self.conv2 = nn.utils.spectral_norm(conv3x3(planes, planes)) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.activation(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.activation(out) return out def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2D( in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias_attr=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2D( in_planes, out_planes, kernel_size=1, stride=stride, bias_attr=False)